Publications by authors named "Gaozhi Xiao"

Background: Optimum moisture in straw and grain at maturity is important for timely harvesting of wheat. Grain harvested at the right time has reduced chance of being affected by adverse weather conditions which is important to maintain grain quality and end use functionality. Wheat varieties with a short dry down period could help in timely harvest of the crop.

View Article and Find Full Text PDF

Lithium (Li) dendrite growth significantly deteriorates the performance and shortens the operation life of lithium metal batteries. Capturing the intricate dynamics of surface localized and rapid mass transport at the electrolyte-electrode interface of lithium metal is essential for the understanding of the dendrite growth process, and the evaluation of the solutions mitigating the dendrite growth issue. Here we demonstrate an approach based on an ultrasensitive tilted fiber Bragg grating (TFBG) sensor which is inserted close to the electrode surface in a working lithium metal battery, without disturbing its operation.

View Article and Find Full Text PDF

Microfluidic devices with a free-standing structure were printed directly on polymer films using the functional materials that form interconnected pores. The printed devices can transport fluids by capillary action in the same fashion as paper-based microfluidic devices, and they can handle much smaller sample volumes than typical paper-based devices. Detection of glucose was performed using both colorimetric and electrochemical methods, and the observed limits of detection (LOD) were similar to those obtained with paper-based microfluidic devices under comparable testing conditions.

View Article and Find Full Text PDF

Operando monitoring of complex physical and chemical activities inside rechargeable lithium-ion batteries during thermal runaway is critical to understanding thermal runaway mechanisms and giving early warning of safety-related failure. However, most existing sensors cannot survive during such extremely hazardous thermal runaway processes (temperature up to 500 °C accompanied by fire and explosion). To address this, we develop a compact and multifunctional optical fiber sensor (12 mm in length and 125 µm in diameter) capable of insertion into commercial 18650 cells to continuously monitor internal temperature and pressure effects during cell thermal runaway.

View Article and Find Full Text PDF

In situ and continuous monitoring of thermal effects is essential for understanding photo-induced catalytic processes at catalyst's surfaces. However, existing techniques are largely unable to capture the rapidly changing temperatures occurring in sub-μm layers at liquid-solid interfaces exposed to light. To address this, a sensing system based on a gold-coated conventional single-mode optical fiber with a tilted fiber Bragg grating inscribed in the fiber core is proposed and demonstrated.

View Article and Find Full Text PDF

Understanding ion transport kinetics and electrolyte-electrode interactions at electrode surfaces of batteries in operation is essential to determine their performance and state of health. However, it remains a challenging task to capture in real time the details of surface-localized and rapid ion transport at the microscale. To address this, a promising approach based on an optical fiber plasmonic sensor capable of being inserted near the electrode surface of a working battery to monitor its electrochemical kinetics without disturbing its operation is demonstrated using aqueous Zn-ion batteries as an example.

View Article and Find Full Text PDF
Article Synopsis
  • Continuous monitoring of electrochemical activity is crucial for understanding energy storage devices, but existing methods fail to provide real-time state of charge (SOC) information during operation.
  • A novel electrochemical surface plasmon resonance (SPR) optical fiber sensor is proposed, enabling in situ monitoring of the electrode potential and SOC of supercapacitors.
  • This method overcomes limitations of traditional detection by focusing on localized charge states, is immune to temperature variations, and utilizes the advantages of optical fiber sensors for remote monitoring in challenging environments.*
View Article and Find Full Text PDF

A simple method of irreversibly sealing SU-8 microfluidic channels using PDMS is reported in this paper. The method is based on inducing a chemical reaction between PDMS and SU-8 by first generating amino groups on PDMS surface using N(2) plasma treatment, then allowing the amino groups to react with the residual epoxy groups on SU-8 surface at an elevated temperature. The N(2) plasma treatment of PDMS can be conducted using an ordinary plasma chamber and high purity N(2), while the residual epoxy groups on SU-8 surface can be preserved by post-exposure baking SU-8 at a temperature no higher than 95 °C.

View Article and Find Full Text PDF

Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics.

View Article and Find Full Text PDF

A novel technique to interrogate a long-period grating (LPG) using a mechanically scannable arrayed waveguide grating (AWG) is proposed. This technique is implemented based on space-to-wavelength mapping by mechanically scanning the input light beam along the input coupler facet of an AWG. By employing a sampled chirped fiber Bragg grating with multiple peaks as a reference, the central wavelength of the LPG is measured.

View Article and Find Full Text PDF

A focusing-based microfluidic mixer was studied. The micromixer utilizes the focusing process required for cytometry to reduce the diffusion distance of molecules to be mixed in order to facilitate the passive diffusion-controlled mixing process. It was found that both the high flow rate ratio of the sheath flow to the flows to be mixed and the low flow rate of the mixing fluids resulted in the short mixing length required within the microfluidic channel.

View Article and Find Full Text PDF

Volume relaxation in polymers and the effect intrinsic to glassy polymers can significantly affect their refractive index over time. Its beta rate has been found to be related only to relaxation temperature T and the glass transition temperature of the polymer Tg and not to the polymeric chemical structure. Universal values of beta have been obtained for polymers and were used to predict the minimum index change related to volume in polymers.

View Article and Find Full Text PDF

We propose and demonstrate a novel high-voltage optical-fiber sensor. This sensor consists of an emitting fiber, a receiving fiber, and a piezoelectric bimorph transducer. The emitting fiber is fixed in a base, whereas the receiving fiber is mounted on the free end of the piezoelectric bimorph transducer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionepkfaae4lg1ei8dhm6sqfrm0cf0g4dhq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once