Proc Natl Acad Sci U S A
October 2024
Acidic CO electrolysis, enhanced by the introduction of alkali cations, presents a strategic approach for improving carbon efficiency compared to processes conducted in neutral and alkaline environments. However, a significant challenge arises from the dissolution of both organic acids and alkali cations in a strongly acidic feed stream, resulting in a considerable energy penalty for downstream separation. In this study, we investigate the feasibility of using flow-electrode capacitive deionization (FCDI) technology to separate organic acids and recover alkali cations from a strongly acidic feed stream (pH ~ 1).
View Article and Find Full Text PDFMicrobial electrosynthesis (MES) is an innovative technology that employs microbes to synthesize chemicals by reducing CO. A comprehensive understanding of cathodic extracellular electron transfer (CEET) is essential for the advancement of this technology. This study explores the impact of different cathodic potentials on CEET and its response to introduction of hydrogen evolution materials (Pt@C).
View Article and Find Full Text PDFElectrochemical CO reduction (CORR), fueled by clean and renewable energy, presents a promising method for utilizing CO effectively. The electrocatalytic reduction of CO to CO using a gas diffusion electrode (GDE) has shown great potential for industrial applications due to its high reaction rate and selectivity. However, guaranteeing its long-term stability still poses a significant challenge.
View Article and Find Full Text PDFTraditional microbial electrochemical sensors encounter challenges due to their inherent complexity. In response to these challenges, the microbial potentiometric sensor (MPS) technology was introduced, featuring a straightforward high-impedance measurement circuit tailored for environmental monitoring. Nonetheless, the practical implementation of conventional MPS is constrained by issues such as the exposure of the reference electrode to the monitored water and the absence of methodologies to stimulate microbial metabolism.
View Article and Find Full Text PDF