Aiming to address soft sensing model degradation under changing working conditions, and to accommodate dynamic, nonlinear, and multimodal data characteristics, this paper proposes a nonlinear dynamic transfer soft sensor algorithm. The approach leverages time-delay data augmentation to capture dynamics and projects the augmented data into a latent space for constructing a nonlinear regression model. Two regular terms, distribution alignment regularity and first-order difference regularity, are introduced during data projection to address data distribution disparities.
View Article and Find Full Text PDFBack-end optimization plays a key role in eliminating the accumulated error in Visual Simultaneous Localization And Mapping (VSLAM). Existing back-end optimization methods are usually premised on the Gaussian noise assumption which does not always hold true due to the non-convex nature of the image and the fact that non-Gaussian noises are often encountered in real scenes. In view of this, we propose a back-end optimization method based on Multi-Convex combined Maximum Correntropy Criterion (MCMCC).
View Article and Find Full Text PDFScientificWorldJournal
January 2015
Existing key-frame extraction methods are basically video summary oriented; yet the index task of key-frames is ignored. This paper presents a novel key-frame extraction approach which can be available for both video summary and video index. First a dynamic distance separability algorithm is advanced to divide a shot into subshots based on semantic structure, and then appropriate key-frames are extracted in each subshot by SVD decomposition.
View Article and Find Full Text PDF