Publications by authors named "Gaoshen Cai"

In this study, the size of molten pool and the porosity of parts under different processing parameters are studied using numerical simulation. According to the results, the appropriate processing parameters were selected to simulate the temperature and residual stress distribution during the forming process of body-centered cube (BCC), face-centered cube (FCC) and rhombic dodecahedron (Dode) lattice structures. In addition, three lattice structures were fabricated via selective laser melting (SLM) technology, and quasi-static compression experiments were carried out to study their mechanical properties.

View Article and Find Full Text PDF

Interfacial pH fluctuation is one of the primary reasons for issues related to Zn metal anodes. Herein, polar amphoteric alanine, as a multifunctional electrolyte additive, is designed to regulate the electric double layer (EDL) and solvation structure. Alanine with self-adaptation capability to pH can stabilize electrolyte pH.

View Article and Find Full Text PDF

Lightweight thin-walled parts are widely used in the aviation and aerospace industries, and with the further increase in the complexity of their features, the traditional manufacturing process can no longer fully meet the high requirements of industrial component manufacturing. In this work, thin-walled parts are processed by Laser based powder bed fusion of metals (PBF-LB/M), and the effects of process parameters on residual stress, hardness, mechanical properties and microstructure of thin-walled parts are systematically investigated. The simulation results show that the maximum equivalent residual stresses are distributed in the combination of the solid and the substrate, and the minimum equivalent residual stresses are mainly distributed in the top two ends and the middle part of the solid, and the stress distribution is symmetrical.

View Article and Find Full Text PDF

In order to investigate the effect of hot isostatic pressing (HIP) process parameters on the properties and fracture behavior of tungsten alloy, HIP experiments with different process parameters were carried out, and the relative density, Rockwell hardness, tensile properties, and tensile fracture behavior were analyzed. The results show that after HIP, the tungsten alloy samples obtained further densification, higher relative density and hardness, and lower dispersity. At 1300 °C and 140 MPa, the sintered bar achieved excellent mechanical properties: yield strength increased by 16.

View Article and Find Full Text PDF

Hollow mesoporous nanospheres MoO/C are successfully constructed through metal chelating reaction between molybdenum acetylacetone and glycerol as well as the Kirkendall effect induced by diammonium hydrogen phosphate. MoOnanoparticles coupled by amorphous carbon are assembled to unique zigzag-like hollow mesoporous nanosphere with large specific surface area of 147.7 mgand main pore size of 8.

View Article and Find Full Text PDF

In order to predict the wrinkling of sheet metal under the influence of fluid pressure and temperature during warm/hot hydroforming, a numerical simulation model for sheet wrinkling prediction was established, taking into account through-thickness normal stress induced by fluid pressure. From simulations using linear and quadratic elements, respectively, it was found that the latter gave results that were much closer to experimental data. A novel experimental method based on an improved Yoshida Buckling Test (YBT) was proposed for testing the wrinkling properties of sheets under the through-thickness normal stress.

View Article and Find Full Text PDF