Nitrous oxide (NO) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel NO reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent.
View Article and Find Full Text PDFAbundant and toxic hydrogen sulfide (H2 S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2 S splitting reaction. Herein a photochemical-chemical loop linked by redox couples such as Fe(2+) /Fe(3+) and I(-) /I3 (-) for photoelectrochemical H2 production and H2 S chemical absorption redox reactions are reported.
View Article and Find Full Text PDFThe development of technologically and economically viable strategies for large-scale fabrication of photoelectrodes is crucial for solar H2 production from photoelectrochemical water splitting. Herein, a low-cost and facile colloidal electrophoretic deposition approach was developed for scalable fabrication of hematite (α-Fe2O3) films. Large-sized uniform films (e.
View Article and Find Full Text PDFIncreasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials.
View Article and Find Full Text PDFA facile vacuum-assisted vapor deposition process has been developed to control the pore size of ordered mesoporous silica materials in a stepwise manner with angstrom precision, providing an unprecedented paradigm for screening a designer hydrophobic drug nanocarrier with optimized pore diameter to maximize drug solubility.
View Article and Find Full Text PDFA simple, yet versatile strategy to prepare size-controlled and monodisperse carbon sub-micrometer spheres is developed based on the biomolecule dopamine. Unlike traditional carbon materials, the resulting carbon sub-micrometer spheres contain much less sp(3) carbon with high-level electroactive nitrogen. Moreover, metal-carbon hybrid sub-micrometer spheres can be easily obtained, and show highly promising catalytic properties in the oxygen-reduction reaction.
View Article and Find Full Text PDFBi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method.
View Article and Find Full Text PDFAnatase TiO(2) nanosheets with exposed reactive {001} facets were prepared in the presence of HF. The photovoltaic properties of NaOH-washed anatase TiO(2) nanosheets with exposed {001} facets were investigated by assembling the TiO(2) as photoanodes in dye-sensitized solar cells (DSSCs). A decreased overall efficiency and increased recombination rate was observed in comparison with the H(2)O-washed counterpart by both dark current scan and open-circuit voltage decay scan, and XPS confirmed that the deleterious effect of sodium ions is responsible for this reduced efficiency in DSSCs.
View Article and Find Full Text PDFSeries of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH.
View Article and Find Full Text PDFA system involving ammonia borane (AB) confined in a metal-organic framework (JUC-32-Y) was synthesized. The hypothesis of nanoconfinement and metallic catalysis was tested and found to be effective for enhancing the hydrogen release kinetics and preventing the formation of ammonia. The AB in JUC-32-Y started to release hydrogen at a temperature as low as 50 degrees C.
View Article and Find Full Text PDFWe demonstrated for the first time by ab initio density functional calculation and molecular dynamics simulation that C(0.5)(BN)(0.5) armchair single-walled nanotubes (NT) are gapless semiconductors and can be spontaneously formed via the hybrid connection of graphene/BN Nanoribbons (GNR/BNNR) at room temperature.
View Article and Find Full Text PDFThe NaNO(3) droplets with sizes of 1-5 microm generated from a nebulizer were deposited on a ZnSe substrate in a Fourier transform infrared attenuated total reflection (FTIR-ATR) chamber. After solidification of the droplets with dry N(2) gas passing through the chamber, the solid NaNO(3) particles were monitored by in situ FTIR-ATR spectra in cycles of deliquescence and efflorescence processes with varying relative humidities (RHs). With an increase in the RH, a dominant peak at approximately 3539 cm(-1), together with three relatively weak peaks at approximately 3400, approximately 3272, and approximately 3167 cm(-1), in the O-H stretching band of water was resolved by the high signal-to-noise ratio FTIR-ATR spectra.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2008
The structures and thermodynamic properties of methyl derivatives of ammonia-borane (BH3NH3, AB) have been studied with the frameworks of density functional theory and second-order Møller-Plesset perturbation theory. It is found that, with respect to pure, methyl ammonia-boranes show higher complexation energies and lower reaction enthalpies for the release of H2, together with a slight increment of the activation barrier. These results indicate that the methyl substitution can enhance the reversibility of the system and prevent the formation of BH3/NH3, but no enhancement of the release rate of H2 can be expected.
View Article and Find Full Text PDFAn advanced hydrogen storage material, with potential for on-board application, is readily prepared by mechanically milling a 1:1 ammonia borane/lithium hydride (AB/LiH) mixture. The material possesses a H capacity of around 10 wt %, higher than the 2015 DOE gravimetric H capacity target, and can rapidly release over 7 wt % pure H2 at around 100 °C.
View Article and Find Full Text PDFWe studied the synthesis of siliceous structures by using a nonionic block copolymer (Pluronic P123) and perfluorooctanoic acid (PFOA) as cotemplates in an acid-catalyzed sol-gel process. Different siliceous structures were obtained through systematically varying the molar ratio (R) of PFOA/P123, and the resultant materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen sorption analysis, and Fourier-transform infrared spectroscopy. The results are consistent and reveal a structure transition from a highly ordered 2D hexagonal (HEX) mesostructure with a rodlike morphology to multilamellar vesicles (MLVs) with sharp edges when R is increased.
View Article and Find Full Text PDFSynergistic effect of metallic couple and carbon nanotubes on Mg results in an ultrafast kinetics of hydrogenation that overcome a critical barrier of practical use of Mg as hydrogen storage materials. The ultrafast kinetics is attributed to the metal-H atomic interaction at the Mg surface and in the bulk (energy for bonding and releasing) and atomic hydrogen diffusion along the grain boundaries (aggregation of carbon nanotubes) and inside the grains. Hence, a hydrogenation mechanism is presented.
View Article and Find Full Text PDFEnviron Sci Technol
May 2007
Industrial solid wastes (fly ash and red mud) have been employed as supports for preparation of Ru-based catalysts. Physical and chemical treatments on red mud were conducted and these modified supports were also used for preparation of Ru-based catalysts. Those Ru catalysts were characterized by various techniques such as N2 adsorption, H2 adsorption, XRD, XPS, and temperature-programmed reduction (TPR), and were then tested for catalytic ammonia decomposition to hydrogen.
View Article and Find Full Text PDFThe shape control of metal nanoparticles allows one to finely tune their properties with great versatility. A self-seeding coreduction method has recently been developed for the synthesis of silver nanodiscs, triangular nanoplates and nanospheres. The addition of surfactants was found to be one of the most important factors in determining the final particle shape.
View Article and Find Full Text PDFBiocompatible polypeptide capsules with high enzyme loading and activity prepared by templating mesoporous silica spheres were used as biomimetic reactors for performing CaCO3 synthesis exclusively inside the capsule interior via urease-catalyzed urea hydrolysis.
View Article and Find Full Text PDFOrdered mesoporous materials show great importance in energy, environmental, and chemical engineering. The diffusion of guest species in mesoporous networks plays an important role in these applications, especially for energy storage, such as supercapacitors based on ordered mesoporous carbons (OMCs). The ion diffusion behavior in two different 2-D hexagonal OMCs was investigated by using cyclic voltametry and electrochemical impedance spectroscopy.
View Article and Find Full Text PDFOrdered mesoporous bioactive glasses (MBGs) with different compositions were prepared by using nonionic block copolymer surfactants as structure-directing agents through an evaporation-induced self-assembly process. Their in-vitro bioactivities were studied in detail by electron microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma (ICP) atomic emission spectroscopy. The ICP element analysis results were further calculated in terms of the total consumption of Ca and P, Delta[Ca]/Delta[P] ratios, and ionic activity product (IP) of hydroxyapatite.
View Article and Find Full Text PDF