Publications by authors named "Gaopeng Guan"

Background: Wound healing is a complex biological process that can be impaired in individuals with diabetes. Diabetic wounds are a serious complication of diabetes that require promoting diagnosis and effective treatment. FGF-21, a member of the endocrine FGF factors family, has caught the spotlight in the treatment of diabetes for its beneficial effects on accelerating human glucose uptake and fat catabolism.

View Article and Find Full Text PDF

Long-term/high-dose glucocorticoid (GC) use results in glycolipid metabolism disorder, which severely limits its clinical application. The role of the gut microbiota and its metabolites in GC-induced glycolipid metabolism disorder remains unclear. Our previous human study found that obvious gut microbiota dysbiosis characterized by an increasing abundance of and a decreased abundance of and were observed in patients with endogenous hypercortisolism.

View Article and Find Full Text PDF

Diabetic wound is one of the common complications in diabetic patients, which exhibits chronic, hard-to-heal characteristics. The healing process of wounds is impaired by several factors, including excessive oxidative stress, blocked angiogenesis, and bacterial infection. The therapeutic effects of traditional microneedle patches remain not satisfactory, due to their difficulty simultaneously targeting multiple targets to treat diabetic wounds.

View Article and Find Full Text PDF
Article Synopsis
  • KLF11 is a gene that regulates insulin production and has been linked to maturity-onset diabetes of the young 7 (MODY7), with a new variant identified in a family with early childhood diabetes.
  • A novel variant, c.577 C>A (p.Pro193Thr), was found in three affected family members, correlating with their diabetes diagnosis and demonstrating characteristics of metabolic syndrome.
  • Functional studies showed that this KLF11 variant reduced its activity and impaired insulin secretion in response to glucose, further advancing our understanding of MODY7’s genetic causes.
View Article and Find Full Text PDF

Chronic wounds caused by severe trauma remain a serious challenge for clinical treatment. In this study, we developed a novel angiogenic 3D-bioprinted peptide patch to improve skin wound healing. The 3D-bioprinted technology can fabricate individual patches according to the shape characteristics of the damaged tissue.

View Article and Find Full Text PDF

Objectives: We aimed to determine the effects of curcumin on palmitic acid- (PA-) induced human osteoblast-like Saos-2 cell apoptosis and to explore the potential molecular mechanisms in vitro level.

Methods: Saos-2 cell were cultured with PA with or without curcumin, N-acetylcysteine (NAC, anti-oxidant), 3-methyladenine (3-MA, autophagy inhibitor) AY-22989 (autophagy agonist) or HO. Then, the effects of PA alone or combined with curcumin on viability, apoptosis, oxidative stress, and autophagy in were detected by CCK-8, flow cytometry assay and western blot.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress and autophagy are involved in myocardial ischemia‑reperfusion (I/R) injury; however, their roles in this type of injury remain unclear. The present study investigated the roles of ER stress and autophagy, and their underlying mechanisms, in H9c2 cells during hypoxia/reoxygenation (H/R) injury. Cell viability was detected by CCK‑8 assay.

View Article and Find Full Text PDF

Palmitic acid (PA) is the most common saturated long-chain fatty acid that causes damage to heart muscle cells. However, the molecular mechanism of PA toxicity in myocardial cells is not fully understood. In the present study, we explored the effects of PA on proliferation and apoptosis of H9c2 cardiomyocytes, and uncovered the signaling pathways involved in PA toxicity.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress-induced apoptosis is a major cause of myocardial ischemia/reperfusion (I/R) injury. Emerging evidence indicates that glucagon-like peptide-1 (GLP-1) has potential cardioprotective effects. However, the precise mechanisms underlying the involvement of GLP-1 in I/R injury remain largely unknown.

View Article and Find Full Text PDF

Purpose: This study investigated the role of natriuretic peptide receptor 2 (NPR2) on cell proliferation and testosterone secretion in mouse Leydig cells.

Materials And Methods: Mouse testis of different postnatal stages was isolated to detect the expression C-type natriuretic peptide (CNP) and its receptor NPR2 by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Leydig cells isolated from mouse testis were cultured and treated with shNPR2 lentiviruses or CNP.

View Article and Find Full Text PDF

Palmitic acid (PA) is the most common saturated long-chain fatty acid in food that causes cell apoptosis. However, little is known about the molecular mechanisms of PA toxicity. In this study, we explore the effects of PA on proliferation and apoptosis in human osteoblast-like Saos-2 cells and uncover the signaling pathways involved in the process.

View Article and Find Full Text PDF

Insulin receptor substrate 2 (IRS2) is a component of the insulin/insulin-like growth factor 1 (IGF1) signaling cascade, which plays an important role in mouse hypothalamic and ovarian functions. The present study was conducted to investigate the role of IRS2 in steroidogenesis, apoptosis, cell cycle and proliferation in mouse granulosa cells (GCs). Flow cytometry and CCK8 assay showed that IRS2 knockdown inhibited cell proliferation, reduced cell viability, and increased apoptosis in GCs.

View Article and Find Full Text PDF