Doublets formed during single-cell RNA sequencing (scRNA-seq) severely affect downstream studies, such as differentially expressed gene analysis and cell trajectory inference, and limit the cellular throughput of scRNA-seq. Several doublet detection algorithms are currently available, but their generalization performance could be further improved due to the lack of effective feature-embedding strategies with suitable model architectures. Therefore, SoCube, a novel deep learning algorithm, was developed to precisely detect doublets in various types of scRNA-seq data.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic screening has been demonstrated as a powerful approach for unbiased functional genomics research. Single-cell CRISPR screening (scCRISPR) techniques, which result from the combination of single-cell toolkits and CRISPR screening, allow dissecting regulatory networks in complex biological systems at unprecedented resolution. These methods allow cells to be perturbed en masse using a pooled CRISPR library, followed by high-content phenotyping.
View Article and Find Full Text PDF