The nucleus accumbens (NAc) plays an important role in various emotional and motivational behaviors that rely on heightened wakefulness. However, the neural mechanisms underlying the relationship between arousal and emotion regulation in NAc remain unclear. Here, we investigated the roles of a specific subset of inhibitory corticotropin-releasing hormone neurons in the NAc (NAc) in regulating arousal and emotional behaviors in mice.
View Article and Find Full Text PDFNeuronal hyperactivity induced by β-amyloid (Aβ) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aβ increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca-dependent manner, associated with aberrant elevation of synapses in both Aβ-treated neurons in vitro and the cortex of APP/PS1 mice in vivo.
View Article and Find Full Text PDFAlthough general anesthesia (GA) enables patients to undergo surgery without consciousness, the precise neural mechanisms underlying this phenomenon have yet to be identified. In addition to many studies over the past two decades implicating the thalamus, cortex, brainstem, and conventional sleep-wake circuits in GA-induced loss of consciousness (LOC), some recent studies have begun to highlight the importance of other brain areas as well. Here, we found that population activities of neurons expressing dopamine D1 receptor (D1R) in the nucleus accumbens (NAc), a critical interface between the basal ganglia and limbic system, began to decrease before sevoflurane-induced LOC and gradually returned after recovery of consciousness (ROC).
View Article and Find Full Text PDFFront Neural Circuits
February 2019
Epilepsy is one of the most common neurological disorders affecting millions of people. Due to the complicated and unclear mechanisms of epilepsy, still a significant proportion of epilepsy patients remain poorly controlled. Epilepsy is characterized by convulsive seizures that are caused by increased excitability.
View Article and Find Full Text PDFSynaptic dysfunction and neuronal excitatory/inhibitory imbalance have been implicated in Alzheimer's disease (AD) pathogenesis. Although intensive studies have been focused on the excitatory synaptic system, much less is known concerning the mechanisms mediating inhibitory synaptic dysfunction in AD. We reported previously that protocadherin-γC5 (Pcdh-γC5), a member of clustered Pcdh-γ subfamily of cadherin-type synaptic adhesion proteins, functions to promote GABAergic synaptic transmission.
View Article and Find Full Text PDF