The use of lignin carbon as an adsorbent for the adsorption of phosphates from wastewater is a promising technology. However, most lignin carbon-based adsorbents still suffer from low adsorption efficiency and poor selectivity. Herein, a novel FeLaO-modified sulfomethylated lignin (SL) biochar adsorbent (FLO@CSL) was prepared for phosphate removal.
View Article and Find Full Text PDFDeveloping the lignin-based functional materials for uranium uptake is extremely attractive, but challenging due to the complex structure, poor solubility and reactivity of lignin. Herein, a novel phosphorylated lignin (LP)/sodium alginate/ carboxylated carbon nanotube (CCNT) composite aerogel (LP@AC) with vertically oriented lamellar configuration was created for efficient uranium uptake from acidic wastewater. The successful phosphorylation of lignin by a facile solvent-free mechanochemical method achieved more than six-times enhancement in U(VI) uptake capacity of lignin.
View Article and Find Full Text PDFA novel multi-layered reticular polyamidoxime (PAO)-functionalized holocellulose bundles (ML-r-PAO@HB) with abundant oriented micro-channels and high mechanical strength was created via a facile solvent-exchange strategy and used for the first time to capture uranium from seawater. Due to the hydrophobic interaction of PAO chains induced by the solvent-exchange, multi-layered reticular PAO was successfully self-assembled onto the oriented micro-channels of the HB, which greatly improved the accessibility to the adsorption sites by increasing the exposed surface of PAO. The ML-r-PAO@HB exhibited high uptake capacity (851.
View Article and Find Full Text PDFThe development of functional biomass-based carbon aerogels (CAs) with excellent mechanical flexibility and ultra-high phosphate capture capacity is crucial for capture and recovery of phosphate from waste water. Herein, a functional biomass-derived CA (MgO@SL/CMC CA) with an ordered wave-shaped layered structure and excellent compressibility was fabricated with the aim of creating a material with efficient phosphate capture performance. The incorporation of sulfonomethylated lignin (SL) significantly improves the mechanical flexibility of MgO@SL/CMC CA.
View Article and Find Full Text PDFPhotoreforming of biomass into hydrogen, biofuels, and chemicals is highly desired, yet this field of research is still in its infancy. Developing an efficient, novel, and environmentally friendly photocatalyst is key to achieving these goals. To date, the nonmetallic and eco-friendly material carbon nitride has found many uses in reactions such as water splitting, CO reduction, N fixation, and biorefinery, owing to its outstanding photocatalytic activity.
View Article and Find Full Text PDFThe novel sulfomethylated lignin-grafted-polyacrylic acid (SL-g-PAA) hydrogel was fabricated in this work via a facile and green synthetic strategy for the efficient removal of heavy metal ions from wastewater, and then successively reused for chemiluminescence (CL). The sulfomethylation of lignin was first performed to improve its water solubility and introduce numerous active sites for adsorption of heavy metal ions. The as-synthesized SL-g-PAA hydrogel with high content of lignin exhibited the highly efficient and rapid removal of various metal ions from simulated wastewater.
View Article and Find Full Text PDFDevelopment of lignin-derived carbon adsorbents with ultrahigh phosphate adsorption activity and rapid adsorption kinetics is of great importance, yet limited success has been achieved. Herein, we develop a CeO functionalized N-doped lignin-derived biochar (Ce@NLC) via a cooperative modification strategy for effective and fast phosphate capture. The novel modification strategy not only contributes greatly to the loading of well-dispersed CeO nanoparticles with a smaller size, but also significantly increases the relative concentration of Ce(III) species on Ce@NLC.
View Article and Find Full Text PDFAs the severe damage of phosphate enrichment in the water ecosystem and the supply shortage of phosphate rock, developing an efficient method for the removal and recycling of phosphate from wastewater is of great significance. To achieve this goal, adsorption technology has been widely investigated, and various adsorbents were developed. Among them, the biomass-derived adsorbents including biomass-derived carbon-based materials, biomass-based anion exchangers and metal-biomass composites have attracted increasing attention over the past years due to the low cost, abundant renewable raw materials and environmental friendliness.
View Article and Find Full Text PDFDesign of carbon-based adsorbents derived from industrial lignin with superior phosphate adsorption performance is of great significance, yet limited researches have been reported. Here, we report a MgO-functionalized lignin-based bio-charcoal (MFLC) as an efficient adsorbent for phosphate removal. The obtained MgO nanoparticles were dispersed homogeneously on MFLC with particle size of 50-100 nm and higher loading content (28.
View Article and Find Full Text PDFPhosphate pollution of aquatic ecosystems is of great concern and requires the development of high-performance materials for effective pollution treatment. To realize efficient phosphate removal from aqueous solution, an easily separable magnetic (FeO) biochar/Mg-Al layered double hydroxide composite (denoted as FCB/MAC) was synthesized two-step electro-assisted modification for the first time. Subsequently, the physical and chemical properties of FCB/MAC were characterized.
View Article and Find Full Text PDFElectrosorption is a novel desalination technique that has many advantages in the treatment of sewage. However, commercially available activated carbon electrodes for electrosorption commonly have low microporosity, poor moulding performance, and low adsorption and regeneration efficiency. Here, we evaluated a novel adsorbent material, activated carbon fibre felt (ACFF), for electrosorption of chromium ions (Cr) in sewage treatment.
View Article and Find Full Text PDFTo develop a novel lignin-based highly efficient nitrogen fertilizer, the amination of the biorefinery technical lignin was conducted by Mannich reaction synergy with phenolation pretreatment. Subsequently, the structural transformations of lignin samples and the reaction mechanism were investigated in detail. The soil column leaching experiment was also performed to research the nitrogen release behavior of aminated lignin in soil.
View Article and Find Full Text PDF