Publications by authors named "Gaojie Hong"

Article Synopsis
  • Catechins in tea are important for health and have economic value, but their production is affected by the environment and plant hormones.
  • Researchers discovered that lack of phosphate affects catechin levels and certain genes related to their production in tea.
  • They found two important proteins (CsPHR1 and CsPHR2) that help with catechin production and how another protein (CsJAZ3) can block this process by interacting with CsPHR1 and CsPHR2.
View Article and Find Full Text PDF

Legumes possess several bioactive nutrients, including flavonoids, and the study of the flavonoid profile of legumes is of great significance to human health. Using widely targeted metabolomics, we revealed the flavonoid profiles of five popular fresh legumes: cowpea, soybean, pea, fava bean, and kidney bean. A total of 259 flavonoids were identified, and the flavonoid accumulation patterns of the five legumes were remarkably different.

View Article and Find Full Text PDF

Sakuranetin plays a key role as a phytoalexin in plant resistance to biotic and abiotic stresses, and possesses diverse health-promoting benefits. However, mature rice seeds do not contain detectable levels of sakuranetin. In the present study, a transgenic rice plant was developed in which the promoter of an endosperm-specific glutelin gene OsGluD-1 drives the expression of a specific enzyme naringenin 7-O-methyltransferase (NOMT) for sakuranetin biosynthesis.

View Article and Find Full Text PDF

is a fungal pathogen that causes rice blast. Plant metabolites such as plant hormones and phytoalexin can promote or inhibit the rice blast infection. To study the effect of plant metabolites on , we selected salicylic acid (SA), abscisic acid (ABA), and a phytoalexin sakuranetin to treat grown on the medium.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found out that a protein called WRKY33 stops plants from making a colorful pigment called anthocyanin when they lack phosphate (a nutrient).
  • WRKY33 works by controlling a key part of the anthocyanin production process, making it harder for the plants to produce this pigment when phosphate is low.
  • When there's not enough phosphate, another protein called PHR1 helps to lower the levels of WRKY33, allowing more anthocyanin to be produced, which helps the plants adapt to the lack of nutrients.
View Article and Find Full Text PDF

In plants, Trihelix transcription factors are responsible for regulating growth, development, and reaction to various abiotic stresses. However, their functions in tea plants are not yet fully understood. This study identified a total of 40 complete Trihelix genes in the tea plant genome, which are classified into five clades: GT-1 (5 genes), GT-2 (8 genes), GTγ (2 genes), SH4 (7 genes), and SIP1 (18 genes).

View Article and Find Full Text PDF

The growth-promoting hormones brassinosteroids (BRs) and their key signaling component BZR1 play a vital role in balancing normal growth and defense reactions. Here, we discovered that BRs and OsBZR1 upregulated sakuranetin accumulation and conferred basal defense against Magnaporthe oryzae infection under normal conditions. Resource shortages, including phosphate (Pi) deficiency, potentially disrupt this growth-defense balance.

View Article and Find Full Text PDF

Rice (Oryza sativa) seeds contain a variety of metabolites, which not only provide energy for their own growth and development, but also are an important source of nutrition for humans. It is crucial to study the distribution of metabolites in rice seeds, but the spatial metabolome of rice seeds is rarely investigated. In this study, Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) imaging was used to reveal the spatial distribution of free soluble sugars (glucose, fructose, sucrose, and maltose), amino acids (9 essential amino acids and 2 amino acids affecting rice eating quality: L-aspartic acid and L-glutamic acid), and 4 metabolites in the flavonoids synthesis pathway (cinnamic acid, naringenin chalcone, naringenin, and dihydrokaempferol) in rice seed at the dough stage.

View Article and Find Full Text PDF

Flavonoids are one of the important metabolites of plants, and many flavonoids have functions of antioxidant or antimicrobial, which can help plants resist environmental stress. On the other hand, flavonoids also have a health-promoting effect for humans, such as antioxidant and anti-aging, and some flavonoids can assist in disease treatment. Fruit is one of the main sources of plant food and flavonoids intake for humans.

View Article and Find Full Text PDF

Plants produce chemical defenses that poison insect herbivores or deter their feeding, but herbivores are also accompanied by microbial endosymbionts crucial for their nutrition, reproduction, and fitness. Hence, plant defenses could target a herbivore's beneficial endosymbionts, but this has not yet been demonstrated. Here, we studied flavonoids that are induced when rice is attacked by a phloem-feeding pest, the brown planthopper (BPH), which harbors beneficial yeast-like symbionts (YLS) essential for insect nutrition, such as by remedying deficiencies in sterols.

View Article and Find Full Text PDF

High temperatures (HTs) seriously affect the yield and quality of tea. Catechins, derived from the flavonoid pathway, are characteristic compounds that contribute to the flavour of tea leaves. In this study, we first showed that the flavonoid content of tea leaves was significantly reduced under HT conditions via metabolic profiles; and then demonstrated that two transcription factors, CsHSFA1b and CsHSFA2 were activated by HT and negatively regulate flavonoid biosynthesis during HT treatment.

View Article and Find Full Text PDF

In contrast to CUT&Tag approaches for profiling bulk histone modifications, current CUT&Tag methods for analysing specific transcription factor (TF)-DNA interactions remain technically challenging due to TFs having relatively low abundance. Moreover, an efficient CUT&Tag strategy for plant TFs is not yet available. Here, we first applied biotinylated Tn5 transposase-mediated CUT&Tag (B-CUT&Tag) to produce high-quality libraries for interrogating TF-DNA interactions.

View Article and Find Full Text PDF

Vegetables are rich in flavonoids and are widely consumed in our daily life. However, comprehensive information on flavonoids components in vegetable varieties and the distribution of flavonoids with health-promoting effects in different vegetables are rarely investigated. Here, we analyzed the constitution of flavonoids among 20 vegetables by widely-targeted metabolome analysis.

View Article and Find Full Text PDF

The NAM, ATAF1/2, and CUC2 (NAC) transcription factors, which are members of a plant-specific gene family, play critical roles during the growth and development of plants and in their adaption to environmental stress. Few NAC transcription factors have been functionally characterized in tea plants (). Based on the analysis of the gene structure, motif pattern, and evolutionary relationship, we identified 104 NAC genes in .

View Article and Find Full Text PDF

Coarse cereals are rich in dietary fiber, B vitamins, minerals, secondary metabolites, and other bioactive components, which exert numerous health benefits. To better understand the diversity of metabolites in different coarse cereals, we performed widely targeted metabolic profiling analyses of six popular coarse cereals, millet, coix, buckwheat, quinoa, oat, and grain sorghum, of which 768 metabolites are identified. Moreover, quinoa and buckwheat showed significantly different metabolomic profiles compared with other coarse cereals.

View Article and Find Full Text PDF

Flavonoids are the most abundant polyphenols in plants, and have antioxidant effects as well as other bioactivities (e.g., anti-inflammatory, anti-cancer, anti-allergic, and neuroprotective effects).

View Article and Find Full Text PDF

Nowadays, because of the great benefit to human health, more and more efforts have been made to increase the production of alkaloids in (Thunb.) Breit. Phosphate (Pi) plays a critical role in plant growth and development, as well as secondary metabolism.

View Article and Find Full Text PDF

Phosphate (Pi) and MYC2-mediated jasmonate (JA) pathway play critical roles in plant growth and development. In particular, crosstalk between JA and Pi starvation signalling has been reported to mediate insect herbivory resistance in dicot plants. However, its roles and mechanism in monocot-bacterial defense systems remain obscure.

View Article and Find Full Text PDF

Commonly found flavonols in plants are synthesized from dihydroflavonols by flavonol synthase (FLS). The genome of Arabidopsis thaliana contains six FLS genes, among which FLS1 encodes a functional enzyme. Previous work has demonstrated that the R2R3-MYB subgroup 7 transcription factors MYB11, MYB12, and MYB111 redundantly regulate flavonol biosynthesis.

View Article and Find Full Text PDF

Genome-wide identification, expression analysis of the MYC family in Camellia sinensis, and potential functional characterization of CsMYC2.1 have laid a solid foundation for further research on CsMYC2.1 in jasmonate (JA)-mediated response.

View Article and Find Full Text PDF

Phosphate (Pi) is the plant-accessible form of phosphorus, and its insufficiency limits plant growth. The over-accumulation of anthocyanins in plants is often an indication of Pi starvation. However, whether the two pathways are directly linked and which components are involved in this process await identification.

View Article and Find Full Text PDF