To confront the energy consumption, high performance membrane materials are urgently needed. Carbon molecular sieve (CMS) membranes exhibit superior capability in separating gas mixtures efficiently. However, it remains a grand challenge to precisely tune the pore size and distribution of CMS membranes to further improve their molecular sieving properties.
View Article and Find Full Text PDFQuaternary ammonium functionalized covalent organic frameworks (COFs) have great potential to enhance hydroxide transport owing to crystalline ordered 1D nanochannels, however, suffer from limited quaternary ammonium functional monomers and poor membrane-forming ability. In this work, a novel aminopropyl quaternary ammonium-functionalized COF (DCOF) is designed and synthesized via a bottom-up strategy. The self-supporting DCOF membrane exhibits high crystallinity with a dense and orderly arrangement of quaternary ammonium groups (IEC, 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
In this study, a novel ultramicroporous pillar-layered Ni-LAP-NH [Ni(l-asp)(Pz-NH)] (l-asp = l-aspartic acid, Pz-NH = aminopyrazine) membranes on porous α-AlO tubes with high performance and good thermal stability was first fabricated using isostructural Ni-LAP[Ni(l-asp)(Pz)] (Pz = pyrazine) crystals as seeds. Utilizing the principle of reticular chemistry, here, we introduced the active amino side group into the Ni-LAP frameworks by replacing the pillar-layered ligand Pz with Pz -NH while maintaining the original Ni-LAP small pore size, and the amino side group induced a "steric hindrance" effect and the physical adsorption affinity, which synergistically delayed CO penetration. It was found that the preferential (111) orientation Ni-LAP-NH membrane (Z10) exhibited a high H/CO separation performance with a separation factor of 41.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
November 2024
Poly (lactic-co-glycolic acid) (PLGA) has been widely used as drug delivery carrier or scaffold for bone repair due to its good biocompatibility, biodegradability, and degradation rate controllability. However, defects, like acidic degradation by-products, are associated with PLGA and restrict its practical applications. Jade powder, leftover from jade polishing process, is a natural material rich in elements of Ca, Si, and Mg while biocompatible and antibacterial.
View Article and Find Full Text PDFNanofiltration (NF) for treatments of pharmaceutical wastewater is a promising direction for water protection and resources recovery. Herein, a novel membrane with heterogeneously charged channels was constructed by modified layer-by-layer assembly methods. Within the well-designed pores, the polyanion structure excludes the cephalexin and the cationic structure slows down its diffusion, thereby rejections for cephalexin are improved.
View Article and Find Full Text PDFA novel strategy is proposed by constructing TFSI ion-sieve interlayer to guide Li-ion selective transport and solid SEI growth. The uniform MgF seeds on the fiber surface reacts rapidly with Li in electrolyte to form Mg and LiF dual functional sites for the first charging process. Benefiting from the high affinity of LiF, the TFSI ions is enriched near the anode forming an ion-sieve interlayer, which acts as a protective umbrella and guides priority penetration of Li due to the coordination reaction with Li and thus homogenize the Li flux.
View Article and Find Full Text PDFPrecise hydrogen sorting from purge gas (H/N) and coke gas (H/CH), commonly carried out by cryogenic distillation, still suffers from low separation efficiency, high energy consumption, and considerable capital cost. Though still in its infancy, membrane technology offers a potential to achieve more efficient hydrogen purification. In this study, an optimum separation of hydrogen towards both methane and nitrogen via a kinetically-driven mechanism is realized through preferred orientation control of a MOF membrane.
View Article and Find Full Text PDFFe-MOFs of mixed valence was synthesized by a solvothermal method via the in-situ reduction of ethylene glycol (EG) pre-coordination with the proper ratio of Fe/Fe between 0.83 and 2.46.
View Article and Find Full Text PDFThe introduction of hydrophobic side chain structures in anion exchange membranes (AEMs) to facilitate ion transport has been widely studied; however, low or moderate hydrophobic hydrocarbon and semifluorinated side chains are insufficient to induce a high degree of microphase separation. Herein, we design and prepare poly(aryl piperidinium) AEMs with completely methylene-free perfluorinated side chains, which can maximize the thermodynamic incompatibility between main- and side chains, thus enhancing microphase separation at medium ion exchange capacities (IECs). According to the molecular dynamics study, the methylene-free perfluorinated side chain leads to better hydration of cations.
View Article and Find Full Text PDFGout flare-up, commonly resulting from monosodium urate monohydrate (MSUM) crystallization, has led to painful inflammatory arthritis among hundreds of millions of people. Herein, a kind of hydrogel nanoparticles (HNPs) with specific properties was developed, aimed at providing a promising pathway for MSUM crystallization control. The experimental and molecular dynamics simulation results synchronously indicate that the fabricated HNPs achieve efficient inhibition of MSUM crystallization governed by the mechanism of "host-guest interaction" even under very low-dose administration.
View Article and Find Full Text PDFThe severe shuttle effect of polysulfides (LiPSs) and the slow liquid-solid phase conversion are the main obstacles hindering the practical application of lithium-sulfur (Li-S) batteries. Separator modification with a high-activity catalyst can boost LiPSs conversion and suppress their shuttle effect. In this work, multi-heterostructured MXene/NiS/CoS with rich S-vacancies was constructed facilely with a hydrothermal and high-temperature annealing strategy for separator modification.
View Article and Find Full Text PDFElastomers are widely used in daily life; however, the preparation of degradable and recyclable elastomers with high strength, high toughness, and excellent crack resistance remains a challenging task. In this report, a polycaprolactone-based poly(urethane-urea) elastomer is presented with excellent mechanical properties by optimizing the arrangement of hard segment clusters. It is found that long alkyl chains of the chain extenders lead to small and evenly distributed hard segment clusters, which is beneficial for improving mechanical properties.
View Article and Find Full Text PDFThe long-term stability of Li-S batteries is significantly compromised by the shuttle effect and insulating nature of active substance S, constraining their commercialization. Developing efficient catalysts to mitigate the shuttle effect of lithium polysulfides (LiPSs) is still a challenge. Herein, we designed and synthesized a rose-like cobalt-nickel bimetallic oxide catalyst NiCoO-O enriched with oxygen vacancies (O) and verified the controllable synthesis of different contents of O.
View Article and Find Full Text PDFActive pharmaceutical ingredients (APIs) crystal preparation is a significant issue for the pharmaceutical development attributed to the effect on anti-inflammatory, anti-bacteria, and anti-viral, etc. While, the massive preparation of API crystal with high polymorphism selectivity is still a pendent challenge. Here, we firstly proposed a criterion according to the molecular aggregation, molecular orientation, and hydrogen bond energy between INA molecules from molecular dynamics (MD) simulations, which predicted the hydrogen bond architecture in crystal under different electric fields, hinting the recognition of crystal polymorphism.
View Article and Find Full Text PDFMixed matrix membranes (MMMs) generally have some fatal defects, such as poor compatibility between the two phases leading to non-selective pores. In this work, PIM-1 was chosen as the polymer matrix, and UiO-66 modified with amidoxime (UiO-66-AO) was used as the filler to prepare the MMMs. In the MMMs, the amino and hydroxyl groups on UO-66-AO form a rich hydrogen bond network with the N and O atoms in the polymer PIM-1 chain to improve the compatibility between the polymer matrix and the filler.
View Article and Find Full Text PDFMembrane distillation (MD) has prominent advantages such as treating high-salinity wastewater with a low-grade thermal energy, high salt rejection, and zero discharge. However, organic fouling and mineral scaling are two major challenges for hydrophobic MD membranes when used for practical applications. Commonly, improving organic fouling- and mineral scaling-resistance require oppositely enhanced wetting properties of membrane, thus is difficult to simultaneously realize dual resistance with one membrane.
View Article and Find Full Text PDFDue to the low boiling point of helium, the nitrogen-rich off gas of the nitrogen rejection unit (NRU) in the liquefied natural gas (LNG) plant usually contains a small amount of CH, approximately 1-4% He, and associated gases, such as H. However, it is difficult to separate hydrogen and helium. Here, we propose two different integrated processes coupled with membrane separation, pressure swing adsorption (PSA), and the electrochemical hydrogen pump (EHP) based on different sequences of hydrogen gas removal.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations.
View Article and Find Full Text PDFDue to the "shuttle effect" and low conversion kinetics of polysulfides, the cycle stability of lithium sulfur (Li-S) battery is unsatisfactory, which hinders its practical application. The Mott-Schottky heterostructures for Li-S batteries not only provide more catalytic/adsorption active sites, but also facilitate electrons transport by a built-in electric field, which are both beneficial for polysulfides conversion and long-term cycle stability. Here, MXene@WS heterostructure was constructed by in-situ hydrothermal growth for separator modification.
View Article and Find Full Text PDFHerein, a facile bionic research platform with fabricated hydrogel composite membrane (HCM) is constructed to uncover the effects of the main components of coffee's metabolites on MSUM crystallization. Tailored and biosafety polyethylene glycol diacrylate/N-isopropyl acrylamide (PEGDA/NIPAM) HCM allows the proper mass transfer of coffee's metabolites and can well simulate the process of coffee's metabolites acting in the joint system. With the validations of this platform, it is shown that chlorogenic acid (CGA) can hinder the MSUM crystals formation from 45 h (control group) to 122 h (2 mM CGA), which is the most likely reason that reduces the risk of gout after long-term coffee consumption.
View Article and Find Full Text PDFFood waste can be converted into insectile fatty acids (FAs) by the larvae of black soldier fly (BSFL), Hermetia illucens, for use in the feed sector or as a source of biodiesel. However, waste oil was less decomposed than carbohydrate or protein in frass due to the limitation of larval lipid metabolism. In this study, 10 yeast strains were screened, corresponding to six species, to examine their capacity of improving lipid transformation performance by BSFL.
View Article and Find Full Text PDFTwo-dimensional (2D) nanomaterials, due to their high aspect ratio and high specific surface area, which provide a more tortuous pathway for larger gas molecules, are frequently used in membrane separation. However, in mixed-matrix membranes (MMMs), the high aspect ratio and high specific surface area of 2D fillers can increase transport resistance, thereby reducing the permeability of gas molecules. In this work, we combine boron nitride nanosheets (BNNS) with ZIF-8 nanoparticles to develop a novel material, ZIF-8@BNNS, to improve both CO permeability and CO/N selectivity.
View Article and Find Full Text PDFHerein, an integrated structure of single Fe atom doped core-shell carbon nanoboxes wrapped by self-growing carbon nanotubes (CNTs) is designed. Within the nanoboxes, the single Fe atom doped hollow cores are bonded to the shells via the carbon needles, which act as the highways for the electron transport between cores and shells. Moreover, the single Fe atom doped nanobox shells is further wrapped and connected by self-growing carbon nanotubes.
View Article and Find Full Text PDF