Publications by authors named "GaoXuan Wang"

In this paper, a high-speed and real-time underwater wireless optical communication (UWOC) system based on orthogonal frequency division multiplexing (OFDM) is designed and demonstrated using the field programmable gate array (FPGA) with a miniaturized demo board designed and made by ourselves. Through the parallel signal processing mode (i.e.

View Article and Find Full Text PDF

A double-channel methane (CH) sensor was developed using a dual-pass multipass cell (DP-MPC) and a novel method that combines averaging dual-channel concentration signals with optimized detector gain configuration. This DP-MPC features two input/output coupling holes, resulting in absorption path lengths of approximately 95.8 m and 35.

View Article and Find Full Text PDF

Hydrocarbon gas sensing is a challenging task using laser absorption spectroscopy due to the complex and broad structure of absorption lines. This application requires quick, accurate and highly sensitive detection of hydrocarbon gases concentrations. In this paper, a compact photoacoustic spectrophone was developed to simultaneously measure methane, propane and isobutane.

View Article and Find Full Text PDF

Improving the spectrum efficiency (SE) is an effective method to further enhance the data rate of bandwidth-limited underwater wireless optical communication (UWOC) systems. Non-orthogonal frequency-division multiplexing (NOFDM) with a compression factor of 0.5 can save half of the bandwidth without introducing any inter-carrier-interference (ICI) only if the total number of subcarriers is large enough, and we termed it as half-spectrum OFDM (HS-OFDM).

View Article and Find Full Text PDF

A high-power near-infrared wavelength-modulated differential photoacoustic spectroscopy sensor for parts-per-billion (ppb) level methane detection is reported by using a homemade Raman fiber optical amplifier. A commercial 1653.7 nm continuous wave distributed feedback laser is employed as a seed source to excite a high light power of ∼550 , which greatly improves sensor performance.

View Article and Find Full Text PDF

In this paper, an optical fiber Fabry-Pérot (FP) microfluidic sensor based on the capillary fiber (CF) and side illumination method is designed. The hybrid FP cavity (HFP) is naturally formed by the inner air hole and silica wall of CF which is side illuminated by another single mode fiber (SMF). The CF acts as a naturally microfluidic channel, which can be served as a potential microfluidic solution concentration sensor.

View Article and Find Full Text PDF

A novel instrument based on broadband cavity-enhanced absorption spectroscopy has been developed using a supercontinuum broadband light source, which showcases its ability in simultaneous measurements of the concentration of NO and the extinction of particulate matter. Side-by-side intercomparison was carried out with the reference NOx analyzer for NO and OPC-N2 particle counter for particulate matter, which shows a good linear correlation with > 0.90.

View Article and Find Full Text PDF

A new photoacoustic soot spectrometer (PASS) operating at 880 nm was developed, for the first time, for filter-free measurements of black carbon (BC). The performance of the developed PASS was characterized and evaluated using a reference aethalometer AE51 on incense smoke in the air. An excellent correlation on the measurement of incense smoke was found between the two instruments in comparison with a regression coefficient of 0.

View Article and Find Full Text PDF

Chlorinated hydrocarbons are frequently used as reagents and organic solvents in different industrial processes. Real-time detection of chlorinated hydrocarbons, as toxic air pollutants and carcinogenic species, is an important requirement for various environmental and industrial applications. In this study, a compact photoacoustic (PA) spectrophone based on a single acoustic resonator for simultaneous detection of trichloromethane (CHCl) and dichloromethane (CHCl) is first reported by employing a low-cost distributed feedback (DFB) laser emitting at 1684 nm.

View Article and Find Full Text PDF

A transportable laser heterodyne radiometer (LHR) based on an external cavity quantum cascade laser, operating in the mid-infrared (mid-IR) around 8 µm, was developed for ground-based remote sensing of multiple greenhouse gases. A newly available novel flexible mid-IR polycrystalline fiber was first exploited to couple solar radiation, real-time captured using a portable sun-tracker, to the LHR receiver. Compared to free space coupling of sunlight, the technique usually used nowadays in the mid-IR, such fiber coupling configuration makes the LHR system readily more stable, simpler, and robust.

View Article and Find Full Text PDF

In this Letter, the development of a custom-designed incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) and its application to in situ measurement of aerosol extinction near the ground surface are described in an effort to address the issue of missing data in the light detection and ranging (lidar) blind zone in the first hundreds of meters of the observation range. Combined measurements of aerosol extinction at the same location using lidar remote sensing at 355 nm and in situ IBBCEAS operating in the UV spectral region around 370 nm showed results with a good correlation (${{\rm R}^2} = {0.90}$R=0.

View Article and Find Full Text PDF

Lock-in amplification (LIA) is an effective approach for recovery of weak signal buried in noise. Determination of the input signal amplitude in a classical dual-phase LIA is based on incoherent detection which leads to a biased estimation at low signal-to-noise ratio. This article presents, for the first time to our knowledge, a new architecture of LIA involving phase estimation with a linear-circular regression for coherent detection.

View Article and Find Full Text PDF