In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II) Cys zinc cluster transcription factor, plays a key role in filamentation repression.
View Article and Find Full Text PDFThe yeast-to-filament transition is an important cellular response to environmental stimulations in dimorphic fungi. In addition to activators, there are repressors in the cells to prevent filament formation, which is important to keep the cells in the yeast form when filamentation is not necessary. However, very few repressors of filamentation are known so far.
View Article and Find Full Text PDFDopaminergic neuron degeneration is a hallmark of Parkinson's disease (PD). We previously reported that the inactivation of von Hippel‒Lindau (VHL) alleviated dopaminergic neuron degeneration in a C. elegans model.
View Article and Find Full Text PDFThe essential challenge of gene therapy is to develop safe and efficient vectors that escort genes to target sites. However, due to the cumbersome workflow of gene transfection into cells, successive gene loss occurs. This leads to considerable reductions in nuclear gene uptake, eventually causing low gene expression.
View Article and Find Full Text PDFEnvironmental pH influences cell growth and differentiation. In the dimorphic yeast , neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear.
View Article and Find Full Text PDFTos7 (Yol019w) is a Sur7/PalI family transmembrane protein in the budding yeast Saccharomyces cerevisiae. Since the deletion of TOS7 did not affect growth or cell morphology, the cellular roles of Tos7 have not been established previously. Here, we show that high-copy TOS7 expression suppressed the growth defect of the secretion-defective RGA1-C term-overexpressing mutant and sec15-1 mutant.
View Article and Find Full Text PDFA viewpoint considering Alzheimer's disease (AD) as "type 3 diabetes" emphasizes the pivotal role of dysfunctional brain energy metabolism in AD. The hormone fibroblast growth factor 21 (FGF21) is a crucial regulator in energy metabolism; however, our understanding of the therapeutic potential and mechanisms underlying the effect of FGF21 on neurodegeneration of AD is far from complete. To further elucidate the effect of FGF21 on AD-related neurodegeneration, we used APP/PS1 transgenic mice to assess the effects of FGF21 on memory dysfunction, amyloid plaque pathology and pathological tau hyperphosphorylation.
View Article and Find Full Text PDFBoi1 and Boi2 are paralogous proteins essential for bud formation in budding yeast. So far, the domains that target Boi1/Boi2 to the polarity sites and function in bud formation are not well understood. Here, we report that a coiled-coil domain of Boi2 cooperates with the adjacent PH domain to confer Boi2's bud-cortex localization and major function in cell growth.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a highly heterogeneous and fatal disease. However, IPF treatment has been limited by the low drug delivery efficiency to lungs and dysfunctional "injured" type II alveolar epithelial cell (AEC II). Here, we present surface-engineered nanoparticles (PER NPs) loading astaxanthin (AST) and trametinib (TRA) adhered to monocyte-derived multipotent cell (MOMC) forming programmed therapeutics (MOMC/PER).
View Article and Find Full Text PDFLiver fibrosis leads to over one million deaths annually worldwide. Hepatic stellate cells (HSCs) have been identified as the main executors of liver fibrosis. Unfortunately, no drug has yet been approved for clinical use against liver fibrosis, largely because the tested drugs have been unable to access HSCs and efficiently remove the collagen accumulation involved in fibrogenesis.
View Article and Find Full Text PDFMsn2/Msn4-family zinc finger transcription factors play important roles in stress response in yeast. However, some members of this family show significant functional divergence in different species. Here, we report that in the dimorphic yeast Yarrowia lipolytica, the Msn2/Msn4-like protein Mhy1 is a key regulator of yeast-to-hypha dimorphic transition but not stress response.
View Article and Find Full Text PDFOur understanding of the mechanisms underlying process in Alzheimer's disease (AD) is far from completion and new therapeutic targets are urgently needed. Recently, the link between dementia and diabetes mellitus (DM) prompted us to search for new therapeutic strategies from glucose metabolism regulators for neurodegeneration. Previous studies have indicated that fibroblast growth factor 21 (FGF21), an attractive and potential therapeutic treatment for DM, may exert diverse effects in the central nervous system.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2019
Metabolic memory, which refers to diabetic stresses that persist after glucose normalization, is considered a major factor in addition to hyperglycaemia for diabetes complications, including dementia. We previously reported that glucagon-like peptide-1 receptor agonist (GLP-1RA) alleviated neuronal injury in diabetes-related dementia models. However, our understanding of the effects and mechanisms of GLP-1RA on metabolic memory-induced neurodegeneration are limited.
View Article and Find Full Text PDFSepsis is a life-threatening health condition that is initially characterized by uncontrolled inflammation, followed by the development of persistent immunosuppression. YCP is a novel α-glucan purified from the mycelium of the marine fungus Phoma herbarum YS4108, which has displayed strong antitumor activity via enhancing host immune responses. In this study, we investigated whether YCP could influence the development of sepsis in a mouse model.
View Article and Find Full Text PDFPertuzumab is an antihuman HER2 antibody developed for HER2 positive breast cancer. Glycosylation profiles are always the important issue for antibody based therapy. Previous findings have suggested the impact of glycosylation profiles on the function of antibodies, like pharmacodynamics, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).
View Article and Find Full Text PDFThe yeast-to-hypha dimorphic transition is important for survival under nutrient starvation in fungi. The oleaginous yeast Yarrowia lipolytica grows in the oval-shaped yeast form in glycerol media whereas it adopts a filamentous form in glucose media. It is not clear why this yeast responds differently to glycerol and glucose.
View Article and Find Full Text PDFInsufficient sialylation can result in rapid clearance of therapeutic glycoproteins by intracellular degradation, which is mainly mediated by asialoglycoprotein receptors (ASGPRs) on hepatic cells. In contrast, for glycoproteins, a long half-life is often related to high level of terminal sialic acid. These could be extremely important for insufficient sialylated biomedicines in clinic, and development of therapeutic glycoproteins in laboratory.
View Article and Find Full Text PDFGTPase-activating proteins (GAPs) play critical roles in the spatial and temporal control of small GTPases. The budding yeast Bem3 is a GAP for Cdc42, a Rho GTPase crucial for actin and septin organization. Bem3 localizes to the sites of polarized growth.
View Article and Find Full Text PDFMARK/PAR-1 protein kinases play important roles in cell polarization in animals. Kin1 and Kin2 are a pair of MARK/PAR-1 orthologs in the budding yeast Saccharomyces cerevisiae. They participate in the regulation of secretion and ER stress response.
View Article and Find Full Text PDFOur previous study has demonstrated that glucagon-like peptide-1 (GLP-1) receptor agonist could protect neurons from advanced glycation end products (AGEs) toxicity in vitro. However, further studies are still needed to clarify the molecular mechanism of this GLP-1 receptor -dependent action. The present study mainly focused on the effect of GLP-1 receptor agonists against the receptor for advanced glycation end products (RAGE) signal pathway and the mechanism underlying this effect of GLP-1.
View Article and Find Full Text PDFIn budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a.
View Article and Find Full Text PDFThe anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C.
View Article and Find Full Text PDFYCP, as a kind of natural polysaccharides from the mycelium of marine filamentous fungus Phoma herbarum YS4108, has great antitumor potential via enhancement of host immune response, but little is known about the molecular mechanisms. In the present study, we mainly focused on the effects and mechanisms of YCP on the specific immunity mediated by dendritic cells (DCs) and T cells. T cell /DC activation-related factors including interferon- (IFN-) γ, interleukin-12 (IL-12), and IL-4 were examined with ELISA.
View Article and Find Full Text PDF