Bamboo plants are an essential component of tropical ecosystems, yet their vulnerability to climate extremes, such as drought, is poorly understood due to limited knowledge of their hydraulic properties. , a commonly used tropical bamboo species, exhibited a substantially higher mortality rate than other co-occurring bamboos during a severe drought event in 2019, but the underlying mechanisms remain unclear. This study investigated the leaf and stem hydraulic traits related to drought responses, including leaf-stem embolism resistance (P; P) estimated using optical and X-ray microtomography methods, leaf pressure-volume and water-releasing curves.
View Article and Find Full Text PDFIn mountainous areas, rock fragments (RFs) are a common feature on the soil surface and in topsoil. Few studies, however, have investigated the spatial distribution of RFs and the relevant mechanisms underpinning their distribution on steep hillslopes, especially in karst regions. We have collected and measured the RF cover, size, and content at the soil surface and within the topsoil of secondary forest, man-made forest, and non-forest land hillslopes in a karst region in Yunnan Province, southwest China.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
December 2014
This study explored the capsule formation and fiber development process of kapok which is a tree in Yuanjiang dry-hot valleys (DHV) using the methods of paraffin section and scanning electron microscopy. The result showed that formation process of kapok capsule can be divided into four stages: the capsule formation within 5 days after anthesis (DAA), the capsule mass period from 5 to 35 DAA, the capsule dehydration period from 35 to 50 DAA, and the capsule bursting period after 50 DAA. The kapok fiber was developed via endocarp cells differentiation (0-2 DAA), swelling (2-5 DAA), bulging (5-10 DAA), fiber elongating (10-40 DAA), and divorcing from pericarp (40-50 DAA).
View Article and Find Full Text PDF