Recent years have witnessed the explosive development of highly sensitive smart sensors based on conductive polymer foam materials. However, the design and development of multifunctional polymeric foam composites as smart sensors applied in complex solvent and oil environments remain a critical challenge. Herein, we design and synthesize vinyl-terminated polytrifluoropropylmethylsiloxane through anionic ring-opening polymerization to fabricate fluorosilicone rubber foam (FSiRF) materials with nanoscale wrinkled surfaces and reactive Si-H groups via a green and rapid chemical foaming strategy.
View Article and Find Full Text PDFMXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g.
View Article and Find Full Text PDFDespite incorporation of organic groups into silica-based aerogels to enhance their mechanical flexibility, the wide temperature reliability of the modified silicone aerogel is inevitably degraded. Therefore, facile synthesis of soft silicone aerogels with wide-temperature stability remains challenging. Herein, novel silicone aerogels containing a high content of Si are reported by using polydimethylvinylsiloxane (PDMVS), a hydrosilylation adduct with water-repellent groups, as a "flexible chain segment" embedded within the aerogel network.
View Article and Find Full Text PDFAn abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire warning response of graphene-based fire warning materials. Herein, we report an unexpected montmorillonite (MMT)-based intelligent fire warning materials that have excellent fire cyclic warning performance and reliable flame retardancy.
View Article and Find Full Text PDFThe leakage of chemicals (either vapors or liquids) severely threatens the environment and even people's health. It remains a great challenge to develop multifunctional and durable materials that can not only detect the chemical vapors but also clean up the liquid chemicals especially high viscous crude oil. Here, a superhydrophobic and conductive foam composite (SCFC) is prepared by decorating carbon black nanoparticles (CBNPs) onto the skeleton of the pre-swollen polymer foam under the assistance of ultrasonication.
View Article and Find Full Text PDFThe cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time. The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties. Efficient healing property was realized under heating environment.
View Article and Find Full Text PDFClin Appl Thromb Hemost
November 2021
This study aims to determine whether dysfunctional High Density Lipoprotein (HDL) influenced the expression of scavenger receptor class B type Ⅰ (SR-B1) to determine reverse cholesterol transport. Blood samples obtained from coronary heart disease patients confirmed by angiography were collected. HDL was extracted from the blood ultracentrifugation.
View Article and Find Full Text PDFSuperhydrophobic surfaces are imperative in flexible polymer foams for diverse applications; however, traditional surface coatings on soft skeletons are often fragile and can hardly endure severe deformation, making them unstable and highly susceptible to cyclic loadings. Therefore, it remains a great challenge to balance their mutual exclusiveness of mechanical robustness and surface water repellency on flexible substrates. Herein, we describe how robust superhydrophobic surfaces on soft poly(dimethylsiloxane) (PDMS) foams can be achieved using an extremely simple, ultrafast, and environmentally friendly flame scanning strategy.
View Article and Find Full Text PDFExcellent electromagnetic interference (EMI) shielding ability, light weight, and good heat resistance are highly required for practical applications of EMI shielding materials, such as in areas of aerospace, aircraft, and automobiles. Herein, a lightweight and robust carbon nanotube (CNT)/polyimide (PI) foam was developed for efficient and heat-resistant EMI shielding. Thanks to poly(vinyl pyrrolidone) (PVP) as a surfactant that not only promotes the uniform dispersion of CNTs to form perfect CNT conductive networks but also can be removed in situ during the polymerization process, the density of resultant CNT/PI foam is only 32.
View Article and Find Full Text PDFUltrasensitive and flexible pressure sensors that can perceive and respond to environmental stimuli have attracted considerable attention due to their potential applications in wearable electronics and electronic skin devices. Here, we report a simple and low-cost strategy to fabricate high-performance pressure sensors via constructing a unique conductive/insulating/conductive sandwich-like porous structure (SPS). Interpenetration of the conductive graphene network throughout the porous insulating interlayer produces a highly efficient transition from the non-conductive to the conductive state.
View Article and Find Full Text PDF