Background And Objective: Acute lung injury (ALI) is a life-threatening disease which has high mortality and lacks effective pharmacological treatments. Excessive inflammation and oxidative stress are the key pathogenesis of ALI. Mefunidone (MFD), a novel small molecule compound, displayed anti-inflammation and anti-oxidative stress effects on streptozocin (STZ) and db/db mice in our previous studies.
View Article and Find Full Text PDFCD147 is a transmembrane glycoprotein and a member of immunoglobulin superfamily, is strongly expressed in melanoma cells. CD147 has a pivotal role in tumor development. Therefore, it is a potential drug target for melanoma.
View Article and Find Full Text PDFLung carcinoma is the leading cause of malignant tumor related mortality in China in recent decades, and the development of new and effective therapies for patients with advanced lung carcinoma is needed. We recently found that fluorofenidone (FD), a newly developed pyridine compound, reduced the activation of Stat3 (Signal transducer and activator of transcription 3) in fibroblasts. Stat3 plays a crucial role in the development of lung cancer and may represent a new therapeutic target.
View Article and Find Full Text PDFNADPH oxidases (NOXs) are the key enzymes of redox signaling in vivo and also the main source of reactive oxygen species (ROS) in the body. ROS plays a role of double-edged sword. On the one hand, ROS, at the level of physiological amount, has the effect of immune defense and also acts as a second messenger involved in the regulation of cellular signaling pathways.
View Article and Find Full Text PDFCyclin-dependent kinase-5(Cdk5) is a kind of Ser/Thr kinases in the signaling pathway, which regulates the neural development. The recent studies have confirmed that hyperactivation of Cdk5 is closely associated with the evolution, progression and apoptosis of tumors. The Cdk5 inhibitors have been extensively studied in the drug discovery against cancer.
View Article and Find Full Text PDFFluorofenidone is a novel derivative of l-mimosine. It has remarkable anti-fibrotic properties. In this study, we established that fluorofenidone ameliorates pulmonary fibrosis (PF) both in vivo and in vitro by specifically inhibiting the expression of eukaryotic translation initiation factor 3a (eIF3a).
View Article and Find Full Text PDFp70 ribosomal protein S6 kinase (p70S6K), an important member of AGC family, is a kind of multifunctional Ser/Thr kinases, which plays an important role in mTOR signaling cascade. The p70 ribosomal protein S6 kinase is closely associated with diverse cellular processes such as protein synthesis, mRNA processing, glucose homeostasis, cell growth and apoptosis. Recent studies have highlighted the important role of S6K in cancer, which arose interests of scientific researchers for the design and discovery of anti-cancer agents.
View Article and Find Full Text PDFSignaling through the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, especially JAK2/STAT3, is involved in renal fibrosis. Fluorofenidone (FD), a novel pyridone agent, exerts anti-fibrotic effects in vitro and in vivo. Herein, we sought to investigate whether FD demonstrates its inhibitory function through preventing JAK2/STAT3 pathway.
View Article and Find Full Text PDFBackground/aims: We evaluated the therapeutic effects of fluorofenidone (AKF-PD), a novel pyridone agent, targeting oxidative stress and fibrosis in obstructive nephropathy.
Methods: AKF-PD was used to treat renal interstitial fibrosis in unilateral ureteral obstruction (UUO) obstructive nephropathy in rats. The expression of NOX2 (gp91phox), fibronectin and extracellular signal regulated kinase (ERK) were detected by western blot.
Can J Physiol Pharmacol
January 2014
Fluorofenidone (AKF-PD) is a novel pyridone derivate that targets transforming growth factor-β1 (TGF-β1) signaling. Previous studies have proven that AKF-PD functions as an antifibrotic agent in pulmonary fibrosis and renal fibrosis models. Activated TGF-β1 signaling is thought to be a major feature of pulmonary hypertension (PH).
View Article and Find Full Text PDFAim: Oxidative stress plays an important role in the progression of renal interstitial fibrosis. The nicotinamide adeninedinucleotide phosphate (NADPH) oxidase (Nox) family is considered one of the major sources of reactive oxygen species (ROS). In the present study, we investigated the inhibitory effects of a novel anti-fibrotic agent, Fluorofenidone (AKF-PD), upon Nox-mediated oxidative stress and deposition of extracellular matrix (ECM) in the development of renalinterstitial fibrosis.
View Article and Find Full Text PDFCardiac myofibroblast differentiation, characterized by expression of alpha-smooth muscle actin (alpha-SMA) and fibrillar collagens, plays a key role in the adverse myocardial remodeling. Fluorofenidone (1-(3-fluorophenyl)-5-methyl-2-(1H)-pyridone, AKF-PD) is a novel pyridone antifibrotic agent, which exerts a strong antifibrotic effect. This study investigated the potential role of AKF-PD in suppressing cardiac myofibroblast conversion induced by transforming growth factor-beta1 (TGF-beta1) and the related mitogen-activated protein kinase (MAPK) signaling pathways in neonatal rat cardiac fibroblasts.
View Article and Find Full Text PDFContext: Chinese patent medicine Si-Mo-Tang oral liquid preparation (SMT) is composed of Aucklandia luppa Decne (Compositae), Citrus aurantium Linn (Rutaceae), Lindera aggregata (Sims) Kosterm (Lauraceae), and Areca catechu Linn (Arecaceae). Studies of SMT have been impeded due to the lack of quality control methods.
Objective: This study aimed to simultaneously determine three alkaloids including synephrine, arecoline, and norisoboldine in SMT for the first time.
Pyridone compounds, such as pirfenidone (PFD) and fluorofenidone (AKF-PD), are multi-target anti-fibrotic agents. Using PFD and AKF-PD as the leading compounds, two series of novel (5-substituent)-2(1H)-pyridone compounds were synthesized with the purpose of maintaining multi-targeting property and overcoming the drawbacks of fast metabolism. These derivatives demonstrated good proliferation inhibiting activity against NIH3T3 cells by MTT assay with AKF-PD as the positive control.
View Article and Find Full Text PDFBackground/aims: Fluorofenidone [1-(3-fluorophenyl)-5-methyl-2-(1H)-pyridone, AKF-PD], a novel pyridone agent, showed potent antifibrotic properties. The aim of the present study was to investigate the effects of AKF-PD on diabetic nephropathy and kidney fibrosis, and to obtain an insight into its mechanisms of action.
Methods: We administered AKF-PD to diabetic db/db mice for 12 weeks.
Fluorofenidone (FD) is a novel pyridone agent with significant antifibrotic effects in vitro. The purpose of this study is to investigate the effects of FD on renal interstitial fibrosis in rats with obstructive nephropathy caused by unilateral ureteral obstruction (UUO). With pirfenidone (PD, 500 mg/kg/day) and enalapril (10 mg/kg/day) as the positive treatment controls, the rats in different experimental groups were administered with FD (500 mg/kg/day) from day 4 to day 14 after UUO.
View Article and Find Full Text PDFObjectives: The present study was designed to investigate the inhibitory effects of fluorofenidone on Ang II-induced apoptosis in renal tubular cells and the related signaling pathway.
Methods: Rat proximal tubular epithelial cells (NRK-52E) were used to examine the anti-apoptosis effects of fluorofenidone. Cell proliferation was assessed by methyl thiazolyl tetrazolium assay.
Objectives: The development of novel antifibrotic agent candidates for the treatment of diabetic nephropathy. The present study was designed to investigate the potential mechanism of fluorofenidone involving the downregulation of CTGF expression induced by TGF-beta1 and the related signaling pathway in mouse mesangial cells (MMCs).
Methods: Mouse mesangial cells were applied to explore the involvement of MAPK in TGF-beta1 signal pathway to CTGF, and the regulation of fluorofenidone.
Aim: Fluorofenidone (1-(3-fluorophenyl)-5-methyl-2-(1H)-pyridone) is a novel pyridone agent. The aim of the present study is to investigate the effects of fluorofenidone on angiotensin (Ang)II-induced fibrosis and the involved molecular mechanism in rat proximal tubular epithelial cells.
Methods: NRK-52E cells, a rat proximal tubular epithelial cell line, were incubated with medium containing AngII, with or without nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenylene iodonium (DPI), losartan, fluorofenidone (2, 4 and 8 mmol/L) and pirfenidone (8 mmol/L) for 24 h.
Can J Physiol Pharmacol
October 2008
Our recent study has shown that asymmetric dimethylarginine (ADMA) plays an important role in facilitating gastric mucosal injury by multiple factors. To explore whether the protection of rutaecarpine against gastric mucosal injury is related to reduction of ADMA content, a model of ethanol-induced gastric mucosal injury in rats was selected for this study. The ulcer index, the content of ADMA and NO, and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in gastric tissues were measured in vivo after pretreatment with rutaecarpine.
View Article and Find Full Text PDFNeuropharmacology
December 2008
Our previous studies showed that rutaecarpine (Rut) protected against myocardial ischemia/reperfusion (I/R) injury, which was associated with activation of transient receptor potential vanilloid subtype 1 (TRPV1). Recently, TRPV1 activation was also reported to exert neuroprotective effects. The present study was to investigate the effect of Rut on hypoxia/reoxygenation (H/R)-induced apoptosis in primary rat hippocampal neurons.
View Article and Find Full Text PDFCalcitonin gene-related peptide (CGRP), the predominant neurotransmitter in capsaicin-sensitive sensory nerves, is a potent vasodilator and inhibits proliferation of vascular smooth muscle cells. Previous investigations have demonstrated that the hypotensive effect of rutaecarpine (Rut) is associated to stimulation of CGRP synthesis and release via activation of the vanilloid receptor subtype 1 (VR1) in the phenol-induced hypertensive rat. This study tested whether the depressor effect and inhibiting vascular hypertrophy of Rut is mediated by endogenous CGRP in 2-kidney, 1-clip (2K1C) hypertensive rats.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2007
A series of 3-substituted-1(3H)-isobenzofuranone 6a-g and 7a-g were synthesized from phthalic anhydride. The compound 6a-g was resolved. The antiplatelet activities of these compounds were evaluated using in vitro experiment of platelet aggregation.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2006
Objective: To determine the relationship between the nitroglycerin tolerance and the stimulation of radical oxygen species (ROS) production, and the therapeutical effect of 3,4,5,6-tetrahydroxyxanthone.
Methods: Vasodilator responses to nitroglycerin were examined in the isolated thoracic aorta. The contents of ROS,and cGMP were determined in the cultured human umbilical vein endothelial cells.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
April 2004
Objective: To explore the curative effects of 1-(3-fluorophenyl)-5-methyl-2- (1H)-pyridone (FMP) on renal fibrosis in rats.
Methods: The effects of FMP on the cell proliferation and Fn secretion were measured by methyl thiazolyl tetrazolium and enzyme-linked immunoabsorbent assay, respectively.
Results: FMP obviously inhibited the proliferation and Fn secretion in rat renal fibroblast 48 hours after the treatment.