Publications by authors named "Gao X Dong"

HgTe colloidal quantum dots (CQDs) are one of few materials that can realize near-to-midwave infrared photodetection. And the quality of HgTe CQD directly affects the performance of photodetection. In this work, we optimize the method of synthesizing HgTe CQDs to reduce the defect concentration, therefore improving the photoelectric properties.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on understanding SCN5A-related cardiomyopathies by creating ventricular cardiomyocytes from stem cells of a dilated cardiomyopathy patient with the R222Q mutation.
  • Using heart-on-a-chip biowires, researchers found that the R222Q mutation led to arrhythmias, altered sodium channel properties, and decreased heart muscle contractility compared to controls.
  • RNA sequencing revealed significant differences in gene regulation affecting calcium handling and sarcomere structure, highlighting the mutation's impact on both cardiac electrical activity and mechanical stability.
View Article and Find Full Text PDF

Understanding the growth mechanisms of HgTe nanoparticles (NPs) with varied shapes is crucial for their applications in infrared photodetection. Here, we investigated the growth mechanisms of HgTe NPs with nanorod, sphere, and tetrahedral shapes in depth. The HgTe NPs with a nanorod shape are obtained at low reaction temperatures and formed by breaking tetrapod branches, while HgTe NPs with sphere and tetrahedron shapes have been further achieved at increased reaction temperatures.

View Article and Find Full Text PDF

In this paper, we fabricate ordered pore array (OPA) Ag film coated glass with the aid of polystyrene sphere (PS) array templates. This kind of OPA Ag coated glass has optical advantages of visible transparency, blue and near-infrared resistance. The average visible transmittance is 68%, including a transmission peak of 78% located at 570 nm, and low average transmittance of 48% in the blue light region that is not damaging to the eyes.

View Article and Find Full Text PDF

Eu-activated phosphors are widely applied in lighting and display areas because of their good optical performance. In this paper, an excellent green-emitting zeolite-3A: 1.3 wt% Eu phosphor is prepared by a green and eco-friendly high-thermal reaction method without any reducing atmosphere or agents.

View Article and Find Full Text PDF

Soil water availability is a key factor restricting the ecological construction and sustainable land use in the loess hilly region. It is of great theoretical and practical significance to understand the soil moisture status of different land use types for the vegetation restoration and the effective utilization of land resources in this area. In this study, EC-5 soil moisture sensors were used to continuously monitor the soil moisture content in the 0-160 cm soil profile in the slope cropland, terraced fields, jujube orchard, and grassland during the growing season (from May to October) in the Yuanzegou catchment on the Loess Plateau, to investigate soil moisture dynamics in these four typical land use types.

View Article and Find Full Text PDF

Water scarcity is a critical factor influencing rain-fed agricultural production on the Loess Plateau, and the exploitation of rainwater is an effective avenue to alleviate water scarcity in this area. This study was conducted to investigate the spatial and temporal distribution of soil moisture in the 0-300 cm under a 21-year-old apple orchard with the rainwater collection and infiltration (RWCI) system by using a time domain reflectometer (TDR) probe on the Loess Plateau. The results showed that there was a low soil moisture zone in the 40-80 cm under the CK, and the RWCI system significantly increased soil moisture in this depth interval.

View Article and Find Full Text PDF

Pertuzumab is an antihuman HER2 antibody developed for HER2 positive breast cancer. Glycosylation profiles are always the important issue for antibody based therapy. Previous findings have suggested the impact of glycosylation profiles on the function of antibodies, like pharmacodynamics, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC).

View Article and Find Full Text PDF

Composite hollow nanostructure composed by transition metal oxides are promising materials in electrochemistry, catalyst chemistry and material science. In this contribution, necklace-like NiO-CuO heterogeneous composite hollow nanostructures were synthesized by annealing Ni/Cu superlattice nanowires in air. Two kinds of morphologies including CuO nanotube linked core-shell structures and CuO nanotube linked hollow structures were obtained.

View Article and Find Full Text PDF

Insufficient sialylation can result in rapid clearance of therapeutic glycoproteins by intracellular degradation, which is mainly mediated by asialoglycoprotein receptors (ASGPRs) on hepatic cells. In contrast, for glycoproteins, a long half-life is often related to high level of terminal sialic acid. These could be extremely important for insufficient sialylated biomedicines in clinic, and development of therapeutic glycoproteins in laboratory.

View Article and Find Full Text PDF

Tellurium nanowires (NWs) are attractive one-dimensional materials for many applications, yet most synthesis processes require hazardous chemical reducing agents and extreme operating conditions. Here we described a solvothermal synthesis of Te NWs using a non-toxic reducing agent, ascorbic acid. Then the Te NWs were assembled into a well-aligned film through a stirring-assisted oil-water-air interface assembly method and a Te NWs photodetector was fabricated which is sensitive to infrared radiation.

View Article and Find Full Text PDF

One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells, a recently identified CD4+ T subset with a unique characteristic to produce Interleukin-17 (IL-17), are critical for the development of autoimmune diseases such as multiple sclerosis, in which IL-23 plays an important role in the differentiation of Th17 cells through IL-23/IL-23-receptor/STAT3 pathway. Previously, soluble recombinant human IL-23 receptor cytokine-binding homology region (hIL23R-CHR) was constructed in our laboratory to neutralize IL-23 and inhibit murine Th17 development in vitro. Herein we present that hIL23R-CHR could inhibit both differentiation and function of human/murine Th17 cells.

View Article and Find Full Text PDF

This communication reports an approach to fabricate large-scale ultrathin open-ended porous TiO2 membranes (UOP-TMs) with ordered straight-through pores. Bi nanodot arrays on Si substrates are obtained by using the UOP-TMs as surface patterning masks.

View Article and Find Full Text PDF

Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene.

View Article and Find Full Text PDF

Despite the growing importance of mucin core O-glycosylation in many biological processes including the protection of epithelial cell surfaces, the immune response, cell adhesion, inflammation, and tumorigenesis/metastasis, the regulation mechanism and conformational significance of the multiple introduction of α-GalNAc residues by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAcTs) remains unclear. Here we report an efficient approach by combining MS and NMR spectroscopy that allows for the identification of O-glycosylation site(s) and the effect of O-glycosylation on the peptide backbone structures during enzymatic mucin domain assembly by using an isoform UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T2 (ppGalNAcT2) in vitro. An electron-capture dissociation device in a linear radio-frequency quadrupole ion trap (RFQ-ECD) combined with a time-of-flight (TOF) mass spectrometer was employed for the identification of Thr/Ser residues occupied by α-GalNAc branching among multiple and potential O-glycosylation sites in the tandem repeats of human mucin glycoproteins MUC4 (Thr-Ser-Ser-Ala-Ser-Thr-Gly-His-Ala-Thr-Pro-Leu-Pro-Val-Thr-Asp) and MUC5AC (Pro-Thr-Thr-Val-Gly-Ser-Thr-Thr-Val-Gly).

View Article and Find Full Text PDF