Publications by authors named "Gao Qiqi"

Article Synopsis
  • Soybean is a crucial crop for protein and oil, but salt stress significantly reduces its yield by disrupting vital processes like photosynthesis and growth.
  • This study analyzed data from 563 soybean samples globally to conduct a Genome-Wide Association Study (GWAS) aimed at identifying genetic markers (SNPs) linked to salt tolerance.
  • Ten significant SNPs were found, along with candidate genes, which can aid in developing salt-tolerant soybean varieties, demonstrating the potential for effective genomic selection.
View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) remains a leading cause of global mortality, with current screening and diagnostic methods often lacking in sensitivity and specificity. In our endeavor to develop precise, objective, and easily accessible diagnostic biomarkers for NSCLC, this study aimed to leverage rapidly evolving liquid biopsy techniques in the field of pathology to differentiate NSCLC patients from healthy controls by isolating peripheral blood samples and enriching extracellular vesicles (EVs) containing lung-derived proteins (thyroid transcription factor-1 [TTF-1] and surfactant protein B [SFTPB]), along with the cancer-associated protein CD151 EVs. Additionally, for practical applications, we established a nano-flow cytometry assay to detect plasma EVs readily.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo.

View Article and Find Full Text PDF

Brain tumors are diseases characterized by abnormal cell growth within or around brain tissues, including various types such as benign and malignant tumors. However, there is currently a lack of early detection and precise localization of brain tumors in MRI images, posing challenges to diagnosis and treatment. In this context, achieving accurate target detection of brain tumors in MRI images becomes particularly important as it can improve the timeliness of diagnosis and the effectiveness of treatment.

View Article and Find Full Text PDF

Instruction: Synchronous multiple primary lung cancer (sMPLC) constitutes a distinct subtype of NSCLC, where accurate diagnosis and prognostic evaluation remain challenging.

Case Presentation: The case involves a 70-year-old male patient admitted to the hospital due to bilateral pulmonary nodules. The patient underwent staged resection.

View Article and Find Full Text PDF

In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application.

View Article and Find Full Text PDF

Preparation requires technical research and development, as well as adaptive, proactive governance.

View Article and Find Full Text PDF

Ginseng is frequently used in traditional Chinese medicine to treat neurological disorders. The primary active component of ginseng is ginsenoside, which has been classified into more than 110 types based on their chemical structures. Ginsenoside Rb1 (GsRb1)-a protopanaxadiol saponin and a typical ginseng component-exhibits anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-autophagy properties in the nervous system.

View Article and Find Full Text PDF

Objective: Acute Necrotizing Encephalopathy of Childhood (ANEC) is a rare, fulminant neurological disease in children with unknown mechanisms and etiology. This study summarized the clinical characteristics, treatment, and prognosis of ANEC through a retrospective analysis, providing insights into the ANEC early diagnosis and prognosis assessment.

Methods: Clinical data of children diagnosed with ANEC at the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University from July 1, 2020, to June 30, 2023, were retrospectively analyzed.

View Article and Find Full Text PDF

This study was to explore the mechanism of ferroptosis and hypoxic-ischemic brain damage in neonatal rats. The neonatal rat hypoxic-ischemic brain damage (HIBD) model was established using the Rice-Vannucci method and treated with the ferroptosis inhibitor liproxstatin-1. Cognitive assessment was performed through absentee field experiments to confirm the successful establishment of the model.

View Article and Find Full Text PDF

Human skin is an organ located in the outermost part of the body; thus, it frequently exhibits visible signs of physiological health. Ethical concerns and genetic differences in conventional animal studies have increased the need for alternative in vitro platforms that mimic the structural and functional hallmarks of natural skin. Despite significant advances in in vitro skin modeling over the past few decades, different reproducible biofabrication strategies are required to reproduce the pathological features of diseased human skin compared to those used for healthy-skin models.

View Article and Find Full Text PDF

As the main precursor of arterial disorders, endothelial dysfunction preferentially occurs in regions of arteries prone to generating turbulent flow, particularly in branched regions of vasculatures. Although various diseased models have been engineered to investigate arterial pathology, producing a multiple-layered vascular model with branched geometries that can recapitulate the critical physiological environments of human arteries, such as intercellular communications and local turbulent flows, remains challenging. This study develops a sequentially suspended three-dimensional bioprinting (SSB) strategy and a visible-light-curable decellularized extracellular matrix bioink (abbreviated as 'VCD bioink') to construct a biomimetic human arterial model with tunable geometries.

View Article and Find Full Text PDF

To reconstruct an ideal full-thickness skin model, basal keratinocytes must be distributed as a confluent monolayer on the dermis. However, the currently available extrusion bioprinting method for the skin is limited when producing an air-exposed cellular monolayer because the cells are encapsulated within a bioink. This is the first study to use sacrificial gelatin-assisted extrusion bioprinting to reproduce a uniform and stratified epidermal layer.

View Article and Find Full Text PDF

Purpose: Genotyping is fundamental in papillary thyroid cancer (PTC) and helps to enhance diagnosis and prognosis and determine appropriate treatments. The phenotype-genotype association in PTC was previously studied, with V600E characterizing classic PTC and tall-cell PTC and mutations characterizing follicular-variant PTC. In clinic, some non-classical histological subtypes of PTC were also identified, however, their genotype remains unclear.

View Article and Find Full Text PDF

Three-dimensional (3D) printing, which is a valuable technique for the fabrication of tissue-engineered constructs and biomedical devices with complex architectures, has brought about considerable progress in regenerative medicine, drug delivery, and diagnosis of diseases. However, because of the static and inanimate properties of conventional 3D-printed structures, it is difficult to use them in therapies for active and precise medicine, such as improved tissue regeneration, targeted or controlled drug delivery, and advanced pathophysiological monitoring. The integration of stimuli-responsive biomaterials into 3D printing provides a potential strategy for designing and building smart constructs that exhibit programmed functions and controllable changes in properties in response to exogenous and autogenous stimuli.

View Article and Find Full Text PDF

Background: Immunotherapy is recently being used to treat esophageal squamous cell carcinoma (ESCC); however, response and survival benefits are limited to a subset of patients. A better understanding of the molecular heterogeneity and tumor immune microenvironment in ESCC is needed for improving disease management.

Methods: Based on the DNA methylation and gene expression profiles of ESCC patients, we identify molecular subtypes of patients and construct a predictive model for subtype classification.

View Article and Find Full Text PDF
Article Synopsis
  • PD-1 inhibitors like tislelizumab are becoming standard treatment for lung cancer but can cause adverse reactions like enteritis.
  • A case was reported where a lung cancer patient experienced enteritis after treatment with tislelizumab and was successfully treated with adalimumab.
  • Adalimumab appears to be a viable alternative for treating PD-1 related enteritis in patients who don't respond to glucocorticoids.
View Article and Find Full Text PDF

Mucormycosis is a rare and invasive fungal infection with high mortality. Cases of invasive pulmonary mucormycosis that involve allergic reactions such as allergic bronchopulmonary mycosis are rarely reported. Herein, we describe a case of invasive pulmonary mucormycosis overlapping with allergic diseases in a patient who presented with eosinophilia and high total plasma immunoglobulin E (IgE).

View Article and Find Full Text PDF

As the leading causes of global death, cardiovascular diseases are generally initiated by artery-related disorders such as atherosclerosis, thrombosis, and aneurysm. Although clinical treatments have been developed to rescue patients suffering from artery-related disorders, the underlying pathologies of these arterial abnormalities are not fully understood. Biofabrication techniques pave the way to constructing diseased artery in vitro models using human vascular cells, biomaterials, and biomolecules, which are capable of recapitulating arterial pathophysiology with superior performance compared with conventional planar cell culture and experimental animal models.

View Article and Find Full Text PDF

Alginate is a natural polysaccharide that typically originates from various species of algae. Due to its low cost, good biocompatibility, and rapid ionic gelation, the alginate hydrogel has become a good option of bioink source for 3D bioprinting. However, the lack of cell adhesive moieties, erratic biodegradability, and poor printability are the critical limitations of alginate hydrogel bioink.

View Article and Find Full Text PDF

ROS1 rearrangements have been identified as driver mutations, accounting for 1-2% of lung adenocarcinoma, but are extremely rare in case of lung squamous cell carcinoma. In this work, we report a lung squamous cell carcinoma in a patient with peripheral lung cancer radiological manifestation, harboring ROS1 rearrangement, with high sensitivity to crizotinib. Our findings suggest that clinicians should pay more attention toward the occurrence of ROS1 rearrangements and the application of crizotinib for lung squamous cell carcinoma treatment.

View Article and Find Full Text PDF

Background: Histological transformation of lung cancer to small cell lung cancer (SCLC) is uncommon. It is a small subset of the possible resistance mechanisms, even in epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer treated with EGFR-tyrosine kinase inhibitors. Reports on programmed cell death-1 (PD-1) inhibitors are rare.

View Article and Find Full Text PDF