Publications by authors named "Ganzuo Li"

The phase diagram of 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF(4)) in aqueous solutions of oleyl polyoxyethylene (20) ether (C(18:1)E(20)) was determined at 25 degrees C by a combination of visual inspection and small-angle X-ray scattering (SAXS). The micellar cubic Im3m liquid crystalline phase found in the ternary system was investigated by means of SAXS and rheological techniques. The cubic samples show highly elastic gel-like properties indicated by their mechanical and discrete relaxation spectra.

View Article and Find Full Text PDF

The phase diagram of Brij 97/water/IPM systems was determined at 25 degrees C. Rich liquid crystalline phases including Lalpha, H1, and cubic Fd3m phases were identified by means of small angle X-ray scattering (SAXS). Microstructure transitions of liquid crystals with changes in surfactant concentration and oil content are explained qualitatively by the surfactant packing parameter (vL/aSlc).

View Article and Find Full Text PDF

By using the iterative method in functional analysis, the potential of the electrical double layer of a spherical colloid particle, which is represented by the so-called Poisson-Boltzmann (PB) equation, has been solved analytically under general potential conditions. With the help of the diagram method in mathematics, the surface potential of the particle has been defined from the second iterative solution. The influence of the parameters included in the solutions on the surface potential has been studied.

View Article and Find Full Text PDF

The solubilities of beta-cyclodextrin (beta-CD), ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and their mixture in water were determined, and the conductivity of these aqueous solutions was measured. It was demonstrated that beta-CD and bmimPF6 could enhance the solubility of each other, and the solubility curves of each were linear with gradients of about 1. The conductivity decreased remarkably with increasing beta-CD concentration, and a discernible break in the conductivity curve could be observed when beta-CD and bmimPF6 were equimolar in the solution.

View Article and Find Full Text PDF

Both ionic liquids and water are typical green solvents. In this work, the phase behavior of the ternary system consisting of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), TX-100, and water was determined at 25.0 degrees C.

View Article and Find Full Text PDF

Surface tensions were measured for several binary mixtures of a multidegree polymerized alkyl polyglycoside, C12G1.46' with different types of surfactants in 0.1 M NaCl at 25 degrees C.

View Article and Find Full Text PDF

Phase diagrams of two ionic liquids: hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate (bmim-PF(6)) and relatively hydrophilic 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF(4)) in aqueous solutions of Brij 97 were determined at 25 degrees C. Two hexagonal liquid crystalline phases formed in bmim-PF(6)- and bmim-BF(4)-containing ternary systems were investigated by means of small-angle X-ray scattering (SAXS) and rheological techniques, with comparison of composition and temperature effects. From analysis of the SAXS data, bmim-PF(6) is dominantly penetrated between the oxyethylene chains of surfactant molecules, whereas bmim-BF(4) is mainly located in the water layer of hexagonal phases.

View Article and Find Full Text PDF

Spontaneous vesicle formation has been observed in aqueous mixtures of tri-(N-dodecyldimethylhydroxypropylammonium chloride) phosphate (PTA) and bis-(2-ethylhexyl) sulfosuccinate (Aerosol OT), which is supported by negative-staining TEM and dynamic light scattering. The range of vesicle formation in the PTA/AOT mixtures is wide and monodisperse vesicles are obtained. The vesicle diameter increases with the total surfactant concentration.

View Article and Find Full Text PDF

The solubility of Ls-54 surfactant in supercritical CO(2) was determined. It was found that the surfactant was highly soluble in SC CO(2) and the water-in-CO(2) microemulsions could be formed, despite it being a non-fluorous and non-siloxane nonionic surfactant. The main reasons for the high solubility and formation of the microemulsions may be that the surfactant has four CO(2)-philic groups (propylene oxide) and five hydrophilic groups (ethylene oxide) and its molecular weight are relatively low.

View Article and Find Full Text PDF