Publications by authors named "Ganwei Lu"

ADAM8 expression is increased in the interface tissue around a loosened hip prosthesis and in the pannus and synovium of patients with rheumatoid arthritis, but its potential role in these processes is unclear. ADAM8 stimulates osteoclast (OCL) formation, but the effects of overexpression or loss of expression of ADAM8 in vivo and the mechanisms responsible for the effects of ADAM8 on osteoclastogenesis are unknown. Therefore, to determine the effects of modulating ADAM expression, we generated tartrate-resistant acid phosphatase (TRAP)-ADAM8 transgenic mice that overexpress ADAM8 in the OCL lineage and ADAM8 knockout (ADAM8 KO) mice.

View Article and Find Full Text PDF

One of the most life-threatening complications of prostate cancer is skeletal metastasis. In order to develop treatment for metastasis, it is important to understand its molecular mechanisms. Our work in this field has drawn parallels between hematopoietic stem cell and prostate cancer homing to the marrow.

View Article and Find Full Text PDF

To better understand the molecular changes that occur in Waldenstrom macroglobulinemia (WM), we employed antibody-based protein microarrays to compare patterns of protein expression between untreated WM and normal bone marrow controls. Protein expression was defined as a >2-fold or 1.3-fold change in at least 67% of the tumor samples.

View Article and Find Full Text PDF

Protein kinase D localizes in the Golgi and regulates protein transport from the Golgi to the plasma membrane. In the present study, we found that PKD3, a novel member of the PKD family, and its fluorescent protein fusions localized in the Golgi and in the vesicular structures that are in part marked by endosome markers. Fluorescent recovery after photobleaching (FRAP) showed that the PKD3-associated vesicular structures were constantly forming and dissolving, reflecting active subcellular structures.

View Article and Find Full Text PDF

Purpose: The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) pathway and the heat shock protein family are up-regulated in multiple myeloma and are both regulators of the cyclin D/retinoblastoma pathway, a critical pathway in multiple myeloma. Inhibitors of mTOR and HSP90 protein have showed in vitro and in vivo single-agent activity in multiple myeloma. Our objective was to determine the effects of the mTOR inhibitor rapamycin and the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on multiple myeloma cells.

View Article and Find Full Text PDF

The mechanisms by which multiple myeloma (MM) cells migrate and home to the bone marrow are not well understood. In this study, we sought to determine the effect of the chemokine SDF-1 (CXCL12) and its receptor CXCR4 on the migration and homing of MM cells. We demonstrated that CXCR4 is differentially expressed at high levels in the peripheral blood and is down-regulated in the bone marrow in response to high levels of SDF-1.

View Article and Find Full Text PDF

Unlabelled: We identified a previously unknown integrin, alpha(9)beta(1), on OCLs and their precursors. Antibody to alpha(9) inhibited OCL formation in human marrow cultures, and OCLs from alpha(9) knockout mice had a defect in actin ring reorganization and an impaired bone resorption capacity.

Introduction: Integrins play important roles in osteoclast (OCL) formation and function.

View Article and Find Full Text PDF

Annexin II is a heterotetramer, consisting of two 11-kDa (p11) and two 36-kDa (p36) subunits, that is produced by osteoclasts and stimulates osteoclast formation. However, its receptor is unknown. We showed that annexin II binds to normal primary human marrow stromal cells and the Paget's marrow-derived PSV10 stromal cell line to induce osteoclast formation.

View Article and Find Full Text PDF

Unlabelled: We report that AX-II, in addition to inducing GM-CSF expression, also increases membrane-bound RANKL synthesis by marrow stromal cells and does so through a previously unreported MAPK-dependent pathway. Thus, both GM-CSF and RANKL are required for AX-II stimulation of OCL formation.

Introduction: Annexin II (AX-II) is an autocrine/paracrine factor secreted by osteoclasts (OCLs) that stimulates human OCL formation and bone resorption in vitro by inducing bone marrow stromal cells and activated CD4+ T cells to produce granulocyte-macrophage colony-stimulating factor (GM-CSF).

View Article and Find Full Text PDF

Dendritic cells (DC) and natural killer (NK) cells are essential components of the innate immune system, which rapidly sense and eliminate invading pathogens and transformed cells, mediate inflammation, and initiate adaptive immune responses. During the early immune events, DC and NK cells interact and regulate each other. The cellular "cross talk" and its molecular mediators are believed to be critical to the quality and magnitude of innate and adaptive immune responses.

View Article and Find Full Text PDF

Protein kinase C (PKC) and protein kinase D (PKD) coordinate and regulate many fundamental cellular processes. In this study, we evaluate the role of classic and novel PKC (c/nPKC) and PKD in glucose transport in L6 myotubes. c/nPKC is either activated by short-term phorbol 12-myristate 13-acetate (PMA) treatment or down-regulated by prolonged PMA treatment at a high dose in L6 myotubes.

View Article and Find Full Text PDF

The catalytic domain of overexpressed protein kinase C (PKC)-delta mediates phorbol 12-myristate 13-acetate (PMA)-induced differentiation or apoptosis in appropriate model cell lines. To define the portions of the catalytic domain that are critical for these isozyme-specific functions, we constructed reciprocal chimeras, PKC-delta/epsilonV5 and -epsilon/deltaV5, by swapping the V5 domains of PKC-delta and -epsilon. PKC-delta/epsilonV5 failed to mediate PMA-induced differentiation of 32D cells, showing the essential nature of the V5 domain for PKC-delta's functionality.

View Article and Find Full Text PDF

Our recent studies have demonstrated that human immature dendritic cells (DCs) are able to directly and effectively mediate apoptotic killing against a wide array of cultured and freshly-isolated cancer cells without harming normal cells. In the present study, we demonstrate that this tumoricidal activity is mediated by multiple cytotoxic TNF family ligands. We determine that human immature DCs express on their cell surface four different cytotoxic TNF family ligands: TNF, lymphotoxin-alpha(1)beta(2), Fas ligand, and TNF-related apoptosis inducing ligand; while cancer cells express the corresponding death receptors.

View Article and Find Full Text PDF

Dendritic cells (DCs) mediate cross-priming of tumor-specific T cells by acquiring tumor Ags from dead cancer cells. The process of cross-priming would be most economical and efficient if DCs also induce death of cancer cells. In this study, we demonstrate that normal human in vitro generated immature DCs consistently and efficiently induce apoptosis in cancer cell lines, freshly isolated noncultured cancer cells, and normal proliferating endothelial cells, but not in most normal cells.

View Article and Find Full Text PDF