Publications by authors named "Gantzer C"

Hepatitis E virus (HEV) is considered as an emerging zoonotic pathogen circulating in a wide range of animals. In recent decades, the genus Paslahepevirus frequently isolated in pigs were the most involved in human clinical practice. In addition, the genus Rocahepevirus have been isolated in rodents, and transmission to humans is increasingly reported worldwide, although gaps remain regarding the exposure factors.

View Article and Find Full Text PDF

Monitoring the presence of RNA from emerging pathogenic viruses, such as SARS-CoV-2, in wastewater (WW) samples requires suitable methods to ensure an effective response. Genome sequencing of WW is one of the crucial methods, but it requires high-quality RNA in sufficient quantities, especially for monitoring emerging variants. Consequently, methods for viral concentration and RNA extraction from WW samples have to be optimized before sequencing.

View Article and Find Full Text PDF

Biomonitoring appears to be a key approach to assess chemical or microbiological contaminations. The freshwater mussel, Dreissena polymorpha (D. polymorpha), is a suitable tool already used to monitor chemical and, more recently, microbiological pollution.

View Article and Find Full Text PDF

Gantzer, C, Huff, D, Butterick, B, Chalmers, S, Marshall, P, Lovell, R, and Siegler, JC. Performing lower-limb strength exercises before or after training does not influence fatigue indices in competitive youth soccer players. J Strength Cond Res XX(X): 000-000, 2024-A multicenter approach was used to conduct a controlled, laboratory-based study (Part A) in conjunction with an ecologically focused, field-based study (Part B) of the influence of timing on hamstring fatigue induced by lower-limb strength exercises.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time.

View Article and Find Full Text PDF

The detection all pathogenic enteric viruses in water is expensive, time-consuming, and limited by numerous technical difficulties. Consequently, using reliable indicators such as F-specific RNA phages (FRNAPH) can be well adapted to assess the risk of viral contamination of fecal origin in surface waters. However, the variability of results inherent to the water matrix makes it difficult to use them routinely and to interpret viral risk.

View Article and Find Full Text PDF

Somatic coliphages (SC) and F-specific RNA coliphages (FRNAPH) have been included in regulations or guidelines by several developed countries as a way of monitoring water safety and the microbiological quality of shellfish harvesting waters. SC are highly diverse in their morphology, size and genome. The Microviridae family contains three genera of phages (Alphatrevirus, Gequatrovirus, and Sinsheimervirus), all having a capsid of similar morphology (icosahedral) and size (25-30 nm in diameter) to that of common pathogenic enteric viruses.

View Article and Find Full Text PDF

Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs.

View Article and Find Full Text PDF

The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH.

View Article and Find Full Text PDF

The continuous emergence of SARS-CoV-2 variants favors potential co-infections and/or viral mutation events, leading to possible new biological properties. The aim of this work was to characterize SARS-CoV-2 genetic variability during the Delta-Omicron shift in patients and in a neighboring wastewater treatment plant (WWTP) in the same urban area. The surveillance of SARS-CoV-2 was performed by routine screening of positive samples by single nucleotide polymorphism analysis within the S gene.

View Article and Find Full Text PDF

The hydrophobicity of virions is a major physicochemical parameter regulating their dissemination in humans and the environment. But knowledge about potential factors modulating virion hydrophobicity is limited due to the lack of suitable quantifying methods. It has been recently shown that sodium dodecyl-sulfate (SDS) labels capsid hydrophobic domains in capillary zone electrophoresis of non-enveloped virions, altering their electrophoretic mobility (μ) in proportion to their hydrophobicity.

View Article and Find Full Text PDF

The elaboration of efficient hydrogel-based materials with antimicrobial properties requires a refined control of defining their physicochemical features, which includes mechanical stiffness, so as to properly mediate their antibacterial activity. In this work, we design hydrogels consisting of polyelectrolyte multilayer films for the loading of T4 and φX174 bacteria-killing viruses, also called bacteriophages. We investigate the antiadhesion and bactericidal performances of this biomaterial against , with a specific focus on the effects of chemical cross-linking of the hydrogel matrix, which, in turn, mediates the hydrogel stiffness.

View Article and Find Full Text PDF

Since many infected people experience no or few symptoms, the SARS-CoV-2 epidemic is frequently monitored through massive virus testing of the population, an approach that may be biased and may be difficult to sustain in low-income countries. Since SARS-CoV-2 RNA can be detected in stool samples, quantifying SARS-CoV-2 genome by RT-qPCR in wastewater treatment plants (WWTPs) has been carried out as a complementary tool to monitor virus circulation among human populations. However, measuring SARS-CoV-2 viral load in WWTPs can be affected by many experimental and environmental factors.

View Article and Find Full Text PDF

The uses of bivalve molluscs in environmental biomonitoring have recently gained momentum due to their ability to indicate and concentrate human pathogenic microorganisms. In the context of the health crisis caused by the COVID-19 epidemic, the objective of this study was to determine if the SARS-CoV-2 ribonucleic acid genome can be detected in zebra mussels (Dreissena polymorpha) exposed to raw and treated urban wastewaters from two separate plants to support its interest as bioindicator of the SARS-CoV-2 genome contamination in water. The zebra mussels were exposed to treated wastewater through caging at the outlet of two plants located in France, as well as to raw wastewater in controlled conditions.

View Article and Find Full Text PDF

Most of the defective/non-infectious enteric phages and viruses that end up in wastewater originate in human feces. Some of the causes of this high level of inactivity at the host stage are unknown. There is a significant gap between how enteric phages are environmentally transmitted and how we might design molecular tools that would only detect infectious ones.

View Article and Find Full Text PDF

High concentrations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome have been described in wastewater and sewage sludge. It raises the question of the security of land sludge disposal practices during a pandemic. This study aimed to compare SARS-CoV-2's resistance to the main inactivating factors in sludge treatments, pH and heat, to that of native wastewater somatic coliphages.

View Article and Find Full Text PDF

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is shed in the feces of infected people. As a consequence, genomic RNA of the virus can be detected in wastewater. Although the presence of viral RNA does not inform on the infectivity of the virus, this presence of genetic material raised the question of the effectiveness of treatment processes in reducing the virus in wastewater and sludge.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are one of the leading causes of acute gastroenteritis worldwide. HuNoVs are frequently detected in water and foodstuffs. Free chlorine and peroxynitrite (ONOO) are two oxidants commonly encountered by HuNoVs in humans or in the environment during their natural life cycle.

View Article and Find Full Text PDF

Hepatitis E virus (HEV) usually causes self-limited liver diseases but can also result in severe cases. Genotypes 1 (G1) and 2 circulate in developing countries are human-restricted and waterborne, while zoonotic G3 and G4 circulating in industrialized countries preferentially infect human through consumption of contaminated meat. Our aims were to identify amino acid patterns in HEV variants that could be involved in pathogenicity or in transmission modes, related to their impact on antigenicity and viral surface hydrophobicity.

View Article and Find Full Text PDF

The aim of the present study was to develop a simple, sensitive, and specific approach to quantifying the SARS-CoV-2 genome in wastewater and to evaluate this approach as a means of epidemiological surveillance. Twelve wastewater samples were collected from a metropolitan area in north-eastern France during April and May 2020. In addition to the quantification of the SARS-CoV-2 genome, F-specific RNA phages of genogroup II (FRNAPH GGII), naturally present in wastewater, were used as an internal process control for the viral concentration and processing of RT-PCR inhibitors.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Histo-Blood Groups Antigens (HBGAs) have been described as attachment factors, promoting HuNoV infection. However, their role has not yet been elucidated.

View Article and Find Full Text PDF