: Vascular endothelial growth factor (VEGF)-A is a sought therapeutic target for PAD treatment because of its potent role in angiogenesis. However, no therapeutic benefit was achieved in VEGF-A clinical trials, suggesting that our understanding of VEGF-A biology and ischemic angiogenic processes needs development. Alternate splicing in VEGF-A produces pro- and anti-angiogenic VEGF-A isoforms; the only difference being a 6-amino acid switch in the C-terminus of the final 8th exon of the gene.
View Article and Find Full Text PDFBackground: Atherosclerotic occlusions decrease blood flow to the lower limbs, causing ischemia and tissue loss in patients with peripheral artery disease (PAD). No effective medical therapies are currently available to induce angiogenesis and promote perfusion recovery in patients with severe PAD. Clinical trials aimed at inducing vascular endothelial growth factor (VEGF)-A levels, a potent proangiogenic growth factor to induce angiogenesis, and perfusion recovery were not successful.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2017
Background: Currently, no therapies exist for treating and improving outcomes in patients with severe peripheral artery disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and to reduce tissue loss in genetic PAD models. However, the cell-specific function, downstream mechanisms, or signaling involved in miR93-mediated ischemic muscle neovascularization is not clear.
View Article and Find Full Text PDFRationale: Atherosclerotic-arterial occlusions decrease tissue perfusion causing ischemia to lower limbs in patients with peripheral arterial disease (PAD). Ischemia in muscle induces an angiogenic response, but the magnitude of this response is frequently inadequate to meet tissue perfusion requirements. Alternate splicing in the exon-8 of vascular endothelial growth factor (VEGF)-A results in production of proangiogenic VEGFa isoforms (VEGFa, 165 for the 165 amino acid product) and antiangiogenic VEGFb (VEGFb) isoforms.
View Article and Find Full Text PDFAngiogenesis is the growth of new blood vessels from pre-existing microvessels. Peripheral arterial disease (PAD) is caused by atherosclerosis that results in ischemia mostly in the lower extremities. Clinical trials including VEGF-A administration for therapeutic angiogenesis have not been successful.
View Article and Find Full Text PDFNeurovascular and gliovascular interactions significantly affect endothelial phenotype. Physiologically, brain endothelium attains several of its properties by its intimate association with neurons and astrocytes. However, during cerebrovascular pathologies such as cerebral ischemia, the uncoupling of neurovascular and gliovascular units can result in several phenotypical changes in brain endothelium.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature.
View Article and Find Full Text PDFObjective: Cytokines contribute to cerebro-vascular inflammatory and immune responses by inducing ECAMs' expression. Ischemic insults can be separated into aglycemic and hypoxic components. However, whether aglycemia, hypoxia or OGD plays a major role in dysregulating BBB or promotes immune cell infiltration via ECAMs' expression is not clear.
View Article and Find Full Text PDFThe normal function of poly (ADP-ribose) polymerase-1 (PARP-1) is the routine repair of DNA damage by adding poly (ADP ribose) polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies.
View Article and Find Full Text PDFThe mobilization and recruitment of blood and lymphatic vasculatures are widely described in inflammatory bowel diseases (IBDs). Although angiogenesis contributes to intense gut inflammation, it remains unclear whether and when lymphangiogenesis amplifies or protects in IBD. The prolonged maintenance of lymphatic (over blood vessels) in inflammation indicates that lymphatic-blood vessel interactions may regulate IBD pathogenesis and restitution.
View Article and Find Full Text PDFInfiltration of leukocytes into post-ischemic cerebrum is a well-described phenomenon in stroke injury. Because CD-8(+) T-lymphocytes secrete cytotoxic proteases, including granzyme-b (Gra-b) that exacerbates post-ischemic brain damage, we investigated roles of Gra-b in human stroke. To study the role of Gra-b in stroke, ischemic and non-ischemic tissues (from post-mortem stroke patients) were analyzed using immunoblotting, co-immunoprecipitation, terminal deoxy uridine nick end labeling (TUNEL) and Annexin-V immunostaining, and in vitro neuron survival assays.
View Article and Find Full Text PDFIn stroke, gene transcription plays a central role in processes such as neuroinflammation and neuroregeneration. To predict new transcriptional regulatory mechanisms in cerebral ischemia, we applied a computational approach combining two kinds of information: the results of a microarray analysis in a mouse model of stroke and in silico detection of transcription factor (TF) binding sites in promoter regions of the genes on the array. By using a discriminative logistic regression model, we identified binding sites significantly associated with the up-regulation of genes.
View Article and Find Full Text PDFAim: Poly (ADP-ribose) polymerase (PARP) is a nuclear repair enzyme whose role is widely depicted in various physiological and pathological processes. In the present study, we wanted to check the status of PARP and the role of various cell death proteases involved in apoptotic and non-apoptotic forms of cell death during transient focal cerebral ischemia in rat model. The activation of these proteases can result in the production of PARP fragments which can be treated as specific signature fragments to the particular protease involved in the pathology and hence the type of cell death.
View Article and Find Full Text PDFSpinal cord injury initiates a complex series of inflammatory and immune responses including the influx of monocytes, macrophages, T-cells, NK cells and so on, into the injured area. In the present study, we found a significant increase in the levels of granzyme-b (gra-b) from the first day after the transection until the third day, with decrease in intensity thereafter. The chemokine IP-10/CXCL10 was also found to be elevated along with gra-b correlating with the infiltration of CD-8(+) cytotoxic T lymphocytes (CTLs) into the injured spinal cord.
View Article and Find Full Text PDFApoptosis Inducing Factor is a mitochondrial protein which upon translocation to nucleus causes large scale DNA fragmentation. The stimulus for the cytosolic release and nuclear translocation for this protein still remains to be understood. The role of calpains, cathepsin-b, Poly ADP (ribose) Polymerase and granzyme-b in the nuclear translocation of AIF has been investigated in the pathology of cerebral ischemia.
View Article and Find Full Text PDFCalpains, cathepsins and caspases play crucial role in mediating cell death. In the present study we observed a cascade of events involving the three proteases during middle cerebral artery occlusion (MCAo) in Wistar rats. The rats were MCA occluded and reperfused at various time points.
View Article and Find Full Text PDF