Publications by authors named "Gansmuller A"

Metal halide perovskites, including some of their related perovskitoid structures, form a semiconductor class of their own, which is arousing ever-growing interest from the scientific community. With halides being involved in the various structural arrangements, namely, pure corner-sharing MX (M is metal and X is halide) octahedra, for perovskite networks, or alternatively a combination of corner-, edge-, and/or face-sharing for related perovskitoids, they represent the ideal probe for characterizing the way octahedra are linked together. Well known for their inherently large quadrupolar constants, which is detrimental to the resolution of nuclear magnetic resonance spectroscopy, most abundant halide isotopes (Cl, Br, I) are in turn attractive for magnetic field-free nuclear quadrupolar resonance (NQR) spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Photoinduced linkage isomers (PLI) of NO in transition-metal nitrosyl compounds can be identified through significant shifts in the (NO) stretching vibration using vibrational spectroscopy.
  • In the study of K[RuClNO], the (NO) stretch shifts by about 150 cm from the N-bound ground state to the oxygen-bound metastable state, and by around 360 cm to the side-on metastable isomer.
  • The research found strong coupling between N-O stretching modes and Ru-N/Ru-O stretching modes, which can be separated to analyze local force constants, revealing that the charge on the NO ligand does not correlate with the frequency shifts observed.
View Article and Find Full Text PDF

We report herein the photoinduced isomerization of a series of arylidene heterocycles . The photoreaction mechanism was investigated by a combined UV-vis/photo-NMR spectroscopic study, and we showed that Ar-TZDs exhibit a positive P-type photochromism, which limits their isomerization efficiency. By exploring the solvatochromism in a series of solvents, the conditions favoring the conversion toward one or the other stereoisomer have been studied, in particular by choosing the appropriate wavelengths.

View Article and Find Full Text PDF

A light-induced linkage NO isomer (MS1) in -[Ru(NO)(py)F](ClO) is detected and measured for the first time by solid-state MAS NMR. Chemical shift tensors of N and F, along with (N-F) spin-spin couplings and relaxation times of MS1, are compared with the ground state (GS) at temperatures < 250 K. Isotropic chemical shifts (N and F) are well resolved for two crystallographically independent cations (A and B) [Ru(NO)(py)F], allowing to define separately both populations of MS1 isomers and thermal decay rates for two structural sites.

View Article and Find Full Text PDF

Photoinduced NO-linkage isomers were investigated in the solid state of labelled trans-[Ru(NO)(py)F](ClO) complex by combined IR-spectroscopy and DFT calculations. Based on the experimental data and the DFT calculations of this isotopically labelled NO nitrosyl compound, we present a complete assignment of the vibrational bands of three nitrosyl linkage isomers in a range from 4000 to 200 cm. The calculated IR-spectra match well with the experimental data allowing reliable assignment of the vibrational bands.

View Article and Find Full Text PDF

Hypothesis: One of the main drawbacks of metal-supported materials, traditionally prepared by the impregnation of metal salts onto pre-synthesized porous supports, is the formation of large and unevenly dispersed particles. Generally, the larger are the particles, the lower is the number of catalytic sites. Maximum atom exposure can be reached within single-atom materials, which appear therefore as the next generation of porous catalysts.

View Article and Find Full Text PDF

Hybrid alginate-silicate microbeads of about 10-20 μm were synthesized by combining alginate crosslinking, silica condensation in a one pot approach using a food grade emulsion as template. A fine tuning of the formulation composition (alginate, silica and calcium sources) is necessary in order to obtain core-shell microbeads instead of unshaped and irregular fragments or even perforated spherical beads. Importantly, in situ linear rheology provides insights into the reaction mechanism as a result of the rheological fingerprint profile obtained during beads formation.

View Article and Find Full Text PDF

Some volatile aromatic solvents have similar or opposite effects to anesthetics in the central nervous system. Like for anesthetics, the mechanisms of action involved are currently the subject of debate. This paper presents an in vivo study to determine whether direct binding or effects on membrane fluidity best explain how solvents counterbalance anesthesia's depression of the middle-ear reflex (MER).

View Article and Find Full Text PDF

This work focuses on the improvement of the R-PDLF heteronuclear recoupling scheme, a method that allows quantification of molecular dynamics up to the microsecond timescale in heterogeneous materials. We show how the stability of the sequence towards rf-imperfections, one of the main sources of error of this technique, can be improved by the insertion of windows without irradiation into the basic elements of the symmetry-based recoupling sequence. The impact of this modification on the overall performance of the sequence in terms of scaling factor and homonuclear decoupling efficiency is evaluated.

View Article and Find Full Text PDF

The penetration of light into optically thick samples containing the G-protein-coupled receptor rhodopsin is studied by numerical finite-element simulations and double-quantum solid-state NMR experiments. Illumination with white light leads to the generation of the active bathorhodopsin photostate in the outer layer of the sample but generates a large amount of the side product, isorhodopsin, in the sample interior. The overall yield of bathorhodopsin is improved by using monochromatic 420 nm illumination and by mixing the sample with transparent glass beads.

View Article and Find Full Text PDF

Photoisomerization of the membrane-bound light receptor protein rhodopsin leads to an energy-rich photostate called bathorhodopsin, which may be trapped at temperatures of 120 K or lower. We recently studied bathorhodopsin by low-temperature solid-state NMR, using in situ illumination of the sample in a purpose-built NMR probe. In this way we acquired (13)C chemical shifts along the retinylidene chain of the chromophore.

View Article and Find Full Text PDF

The 13C chemical shifts of the primary visual photointermediate bathorhodopsin have been observed by performing double-quantum magic-angle-spinning NMR at low temperature in the presence of illumination. Strong isomerization shifts have been observed upon the conversion of rhodopsin into bathorhodopsin.

View Article and Find Full Text PDF

Many important double-quantum recoupling techniques in solid-state NMR are classified as being gamma-encoded. This means that the phase of the double-quantum effective Hamiltonian, but not its amplitude, depends on the third Euler angle defining the orientation of the molecular spin system in the frame of the magic-angle-spinning rotor. In this paper, we provide closed analytical solutions for the dependence of the powder-average double-quantum-filtered signal on the recoupling times, within the average Hamiltonian approximation for gamma-encoded pulse sequences.

View Article and Find Full Text PDF

A new double-quantum solid-state NMR pulse sequence is presented and used to measure one-bond 13C-13C J-couplings in a set of 13C2-labeled rhodopsin isotopomers. The measured J-couplings reveal a perturbation of the electronic structure at the terminus of the conjugated chain but show no evidence for protein-induced electronic perturbation near the C11-C12 isomerization site. This work establishes NMR methodology for measuring accurate 1JCC values in noncrystalline macromolecules and shows that the measured J-couplings may reveal local electronic perturbations of mechanistic significance.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 7 (SCA7) is one of several inherited neurodegenerative disorders caused by a polyglutamine (polyQ) expansion, but it is the only one in which the retina is affected. Increasing evidence suggests that transcriptional alterations contribute to polyQ pathogenesis, although the mechanism is unclear. We previously demonstrated that the SCA7 gene product, ataxin-7 (ATXN7), is a subunit of the GCN5 histone acetyltransferase-containing coactivator complexes TFTC/STAGA.

View Article and Find Full Text PDF

The initial invasive processes during cancer development remain largely unknown. Stromelysin-3/matrix metalloproteinase 11 (ST3/MMP11) is associated with tumor invasion and poor prognosis. We present novel evidence that adipocytes present at human breast tumor invasive front are induced by cancer cells to express ST3.

View Article and Find Full Text PDF

Spermiogenesis entails a major biochemical and morphological restructuring of the germ cell involving replacement of the somatic histones by protamines packing the DNA into the condensed spermatid nucleus and elimination of the cytoplasm during the elongation phase. We describe H1T2, an histone H1 variant selectively and transiently expressed in male haploid germ cells during spermiogenesis. In round and elongating spermatids, H1T2 specifically localizes to a chromatin domain at the apical pole, revealing a polarity in the spermatid nucleus.

View Article and Find Full Text PDF

A new mixed zinc-aluminum phosphate Zn(3)Al(6)(PO(4))(12), 4tren, 17H(2)O (MIL-74) has been hydrothermally synthesized with the tris(2-aminoethyl)amine (tren) as a structure-directing agent (453 K, 36 h, autogenous pressure). The solid was characterized by a nonclassical method combining single-crystal X-ray diffraction and several solid-state NMR experiments, RFDR, C7 double quantum ((31)P), and 3QMAS ((27)Al). Its crystal structure is cubic, a = 16.

View Article and Find Full Text PDF

ACT [activator of cAMP-responsive element modulator (CREM) in testis] is a LIM-only protein that interacts with transcription factor CREM in postmeiotic male germ cells and enhances CREM-dependent transcription. CREM regulates many crucial genes required for spermatid maturation, and targeted mutation of the Crem gene in the mouse germ-line blocks spermatogenesis. Here we report the phenotype of mice in which targeted disruption of the act gene was obtained by homologous recombination.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA), a progressive neurodegenerative disorder associated with cardiomyopathy, is caused by severely reduced frataxin, a mitochondrial protein involved in Fe-S cluster assembly. We have recently generated mouse models that reproduce important progressive pathological and biochemical features of the human disease. Our frataxin-deficient mouse models initially demonstrate time-dependent intramitochondrial iron accumulation, which occurs after onset of the pathology and after inactivation of the Fe-S dependent enzymes.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA), the most common recessive ataxia, is characterized by degeneration of the large sensory neurons of the spinal cord and cardiomyopathy. It is caused by severely reduced levels of frataxin, a mitochondrial protein involved in iron-sulfur cluster (ISC) biosynthesis. Through a spatiotemporally controlled conditional gene-targeting approach, we have generated two mouse models for FRDA that specifically develop progressive mixed cerebellar and sensory ataxia, the most prominent neurological features of FRDA.

View Article and Find Full Text PDF

Morphogenesis of the Caenorhabditis elegans embryo is driven by actin microfilaments in the epidermis and by sarcomeres in body wall muscles. Both tissues are mechanically coupled, most likely through specialized attachment structures called fibrous organelles (FOs) that connect muscles to the cuticle across the epidermis. Here, we report the identification of new mutations in a gene known as vab-10, which lead to severe morphogenesis defects, and show that vab-10 corresponds to the C.

View Article and Find Full Text PDF

A new fluorinated gallium phosphate, MIL-50, has been synthesized under mild hydrothermal conditions using 1,6-diaminohexane. The chemical formula of MIL-50 is Rb(2)Ga(9)(PO(4))(8)(HPO(4))(OH)F(6).2N(2)C(6)H(18).

View Article and Find Full Text PDF

Myotubularin, the phosphatase mutated in X-linked myotubular myopathy, was shown to dephosphorylate phosphatidylinositol 3-monophosphate (PtdIns3P) and was also reported to interact with nuclear transcriptional regulators from the trithorax family. We have characterized a panel of specific antibodies and investigated the subcellular localization of myotubularin. Myotubularin is not detected in the nucleus, and localizes mostly as a dense cytoplasmic network.

View Article and Find Full Text PDF

TLF (TBP-like factor) is a protein commonly thought to belong to the general transcription initiation complex. TLF is evolutionarily conserved and has been shown to be essential for early development in C. elegans, zebrafish and Xenopus.

View Article and Find Full Text PDF