The purpose of this study was to evaluate the effect of acrylated hydroxyazobenzene (AHA) copolymers in a composite-resin matrix on Streptococcus mutans (SM) biofilms. The AHA was synthesized and polymerized within a bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate (bisGMA:TEGDMA) matrix while bisGMA:TEGDMA discs served as controls. The cytotoxicity of AHA was determined using a cell viability assay.
View Article and Find Full Text PDFThe presence of cariogenic bacteria within the prepared tooth cavity at the adhesive resin-dentin interface is detrimental to the long-term stability and function of composite restorations. Here, we report the synthesis and incorporation of methacrylated azobenzene nanogels within bisphenol A-glycidyl methacrylate/hydroxyethyl methacrylate/ethanol (B/H/E) adhesive resins and evaluate their ability to reduce the bacterial invasion of cariogenic Streptococcus mutans biofilms while preserving the mechanical strength and structural integrity of the critical interfacial connection between the restoration and the tooth. The azobenzene nanogel, with a hydrodynamic radius of < 2 nm and a molecular weight of 12,000 Da, was polymerized within B/H/E adhesive formulations at concentrations of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Antibacterial strategies sans antibiotic drugs have recently garnered much interest as a mechanism by which to inhibit biofilm formation and growth on surfaces due to the rise of antibiotic-resistant bacteria. Based on the photofluidization of azobenzenes, we demonstrate for the first time the ability achieve up to a 4 log reduction in bacterial biofilms by opto-mechanically activating the disruption and dispersion of biofilms. This unique strategy with which to enable biofilm removal offers a novel paradigm with which to combat antibiotic resistance.
View Article and Find Full Text PDF