Enterovirus D68 (EV-D68) is a re-emerging enterovirus that causes acute respiratory illness in infants and has recently been linked to Acute Flaccid Myelitis. Here, we show that the histone deacetylase, SIRT-1, is essential for autophagy and EV-D68 infection. Knockdown of SIRT-1 inhibits autophagy and reduces EV-D68 extracellular titers.
View Article and Find Full Text PDFThe respiratory picornavirus enterovirus D68 is a causative agent of acute flaccid myelitis, a childhood paralysis disease identified in the last decade. Poliovirus, another picornavirus associated with paralytic disease, is a fecal-oral virus that survives acidic environments when passing from host to host. Here, we follow up on our previous work showing a requirement for acidic intracellular compartments for maturation cleavage of poliovirus particles.
View Article and Find Full Text PDFEnterovirus D68 (EV-D68), a picornavirus traditionally associated with respiratory infections, has recently been linked to a polio-like paralytic condition known as acute flaccid myelitis (AFM). EV-D68 is understudied, and much of the field's understanding of this virus is based on studies of poliovirus. For poliovirus, we previously showed that low pH promotes virus capsid maturation, but here we show that, for EV-D68, inhibition of compartment acidification during a specific window of infection causes a defect in capsid formation and maintenance.
View Article and Find Full Text PDFBackground: Human cytomegalovirus (HCMV) is the leading cause of congenital infections resulting in severe morbidity and mortality among newborns worldwide. Although both the host's and the virus' genetic backgrounds contribute to the outcome of infections, significant gaps remain in our understanding of the exact mechanisms that determine disease severity.
Objectives: In this study, we sought to identify a correlation between the virological features of different HCMV strains with the clinical and pathological features of congenitally infected newborns, therefore proposing new possible prognostic factors.
Enterovirus D68 (EV-D68) is a respiratory pathogen associated with acute flaccid myelitis, a childhood paralysis disease. No approved vaccine or antiviral treatment exists against EV-D68. Infection with this virus induces the formation of autophagosomes to enhance its replication but blocks the downstream autophagosome- lysosome fusion steps.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis.
View Article and Find Full Text PDFCytomegalovirus (CMV) is the leading cause of congenital infection. Its occurrence is phenotypically heterogeneous. The type of maternal infection, primary or non-primary, is an important factor related to the symptomatic disease, the primary infection was long considered the only cause of severe neonatal disease.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli.
View Article and Find Full Text PDFUnderstanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors - e.g.
View Article and Find Full Text PDFAn integral part of the antiviral innate immune response is the APOBEC3 family of single-stranded DNA cytosine deaminases, which inhibits virus replication through deamination-dependent and -independent activities. Viruses have evolved mechanisms to counteract these enzymes, such as HIV-1 Vif-mediated formation of a ubiquitin ligase to degrade virus-restrictive APOBEC3 enzymes. A new example is Epstein-Barr virus (EBV) ribonucleotide reductase (RNR)-mediated inhibition of cellular APOBEC3B (A3B).
View Article and Find Full Text PDFEnterovirus B species typically cause a rapid cytolytic infection leading to efficient release of progeny viruses. However, they are also capable of persistent infections in tissues, which are suggested to contribute to severe chronic states such as myocardial inflammation and type 1 diabetes. In order to understand the factors contributing to differential infection strategies, we constructed a chimera by combining the capsid proteins from fast-cytolysis-causing echovirus 1 (EV1) with nonstructural proteins from coxsackievirus B5 (CVB5), which shows persistent infection in RD cells.
View Article and Find Full Text PDFBackground: Human cytomegalovirus (HCMV) is the leading cause of congenital infections resulting in severe morbidity and mortality among infected children. Although the virus is highly polymorphic, particularly in genes contributing to immune evasion, the mechanisms underlying its genetic variability and pathogenicity are only partially understood.
Objectives: We aimed to characterize different HCMV clinical strains isolated from 21 congenitally- or postnatally-infected children for in vitro growth properties and genetic polymorphisms.
The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established.
View Article and Find Full Text PDF