Packed tower reactors, mechanically stirred reactors, airlift reactors, and gas-self-inducing reactors are frequently utilized among the various types of reactors. Self-inducing reactors exhibit notable advantages owing to their simple structure, effective gas-liquid intermixing, and low energy requirements, rendering them highly suitable for bioengineering endeavors. The purpose of this analysis is to shed light on the use of self-inducing reactors in bioengineering by examining the following five parameters: critical speed, suction rate, volumetric mass transfer coefficient, power characteristics, and gas hold-up.
View Article and Find Full Text PDFFermentation plays a pivotal role in the industrialization of bioproducts, yet there is a substantial lag in the fermentation process regulation. Here, an artificial neural network (ANN) and genetic algorithm (GA) coupled with fermentation kinetics were employed to establish an innovative lysine fermentation control. Firstly, the strategy of coupling GA with ANN was established.
View Article and Find Full Text PDFBio-based pentamethylene diisocyanate (PDI) is a new type of sustainable isocyanate, which has important applications in coatings, foams, and adhesives. Technical-economic analysis of the PDI distillation process can promote the industrialization of PDI. The thermal analysis of PDI facilitates the smooth running of the simulation process.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
February 2023
Based on the demand of enterprise talents and the characteristics of manufacturing process management in biotechnology, in order to make the students acquire the ability to solve complex engineering problems in the production process, we developed a "Comprehensive Biotechnology Experiment" course, where two-step enzymatic production of l-aspartate and l-alanine were the key processes. In this course, we drew lessons from the site management of the production enterprise, performed the experimental operation mode of four shifts and three operations. The content of this course includes principles, methods and experimental techniques of several core curricula and the site management mode of enterprises.
View Article and Find Full Text PDF1,5-Pentanediamine hydrochloride (PDAH) was an important raw material for the preparation of bio-based pentamethylene diisocyanate (PDI). PDI has shown excellent properties in the application of adhesives and thermosetting polyurethane. In this study, PDAH was recovered from 1,5-pentanediamine (PDA) fermentation broth using a cation exchange resin and purified by crystallization.
View Article and Find Full Text PDFNattokinase from fermentation has recently gained more attention due to its beneficial effects on cardiovascular system. However, the instability of free nattokinase limits its application. The aim of the study was to develop a spray-drying microencapsulation process to obtain the nattokinase powder with high activity, high quality, and strong storage stability.
View Article and Find Full Text PDFBio-based cadaverine, manufactured by the decarboxylation of l-lysine, is an important raw material. However, the extractive-distillation separation and purification of cadaverine from bioconversion fluids require high energy consumption and leads to the loss of self-released carbon dioxide during the decarboxylation of l-lysine. This study focuses on the green and sustainable separation of bio-based cadaverine based on the capture of self-released carbon dioxide by cadaverine forming carbamate.
View Article and Find Full Text PDFS-adenosyl-l-methionine (SAM) has been attracting increasing attention because of its significance in the pharmaceutical industry; however, the high cost of this compound limits its application. Tofu yellow serofluid exhibits high nutritional value and is not costly; therefore, it can be utilized as a substrate in the fermentation industry. In the current study, Saccharomyces cerevisiae was cultured in the tofu yellow serofluid fermentation medium for the SAM biosynthesis.
View Article and Find Full Text PDFArtificial metalloenzymes that combine the advantages of natural enzymes and metal catalysts have been getting more attention in research. As a proof of concept, an artificial nanometalloenzyme (CALB-Shvo@MiMBN) was prepared by co-encapsulation of metallo-organic catalyst and enzyme in a soft nanocomposite consisting of 2-methylimidazole, metal ions, and biosurfactant in mild reaction conditions using a one-pot self-assembly method. The artificial nanometalloenzyme with lipase acted as the core, and the metallo-organic catalyst embedded in micropore exhibited a spherical structure of 30-50 nm in diameter.
View Article and Find Full Text PDFMethods for enhancing enzyme activities in two-phase systems are getting more attention. Phospholipase D (PLD) was successfully encapsulated into metal-surfactant nanocapsules (MSNCs) using a one-pot self-assembly technique in an aqueous solution. The highest yield for the production of high-value phosphatidylserine (PS) from low-value phosphatidylcholine (PC) in the two-phase system was achieved by encapsulating PLD into MSNCs formed from Ca which gave an enzyme activity that was 133.
View Article and Find Full Text PDFMetal-driven papain-surfactant nanocomposite (PA@MSNC), a novel soft nanobiocatalyst, was successfully prepared via one-pot self-assembly technique in aqueous solution for the biosynthesis of N-(benzyloxycarbonyl)-L-alanyl-L-glutamine (Z-Ala-Gln) dipeptide in deep eutectic solvents (DESs). The metal-driven self-assembly process generated PA@MSNC as nanospheres of ˜130 nm in diameter, with high protein loading and relative enzyme activity of 420 mg/g and 80% (4270 U/g protein), respectively. PA@MSNC showed high apparent substrate affinity and catalytic efficiency.
View Article and Find Full Text PDFJ Biosci Bioeng
April 2018
Here, we have presented a technically simple and efficient method for preparing a continuous flow microreactor by employing immobilized β-glucosidase in a silica quartz capillary tube. Developing an immobilized enzyme layer on the inner wall of the capillary tube involved the modification of the inner wall using bifunctional crosslinking agents 3-aminopropyltriethoxysilane and glutaraldehyde before attaching β-glucosidase. The microreactor afforded unique reaction capacities compared with conventional batch operational configurations.
View Article and Find Full Text PDFSchizochytrium is an effective species for producing omega-3 docosahexaenoic acid (DHA). Here, we report a genome sequence of Schizochytrium sp. CCTCC M209059, which has a genome size of 39.
View Article and Find Full Text PDFTwo gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.
View Article and Find Full Text PDF