Publications by authors named "Gani Rahmon"

The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies.

View Article and Find Full Text PDF

Analysis of morphometric features of nuclei plays an important role in understanding disease progression and predict efficacy of treatment. First step towards this goal requires segmentation of individual nuclei within the imaged tissue. Accurate nuclei instance segmentation is one of the most challenging tasks in computational pathology due to broad morphological variances of individual nuclei and dense clustering of nuclei with indistinct boundaries.

View Article and Find Full Text PDF