Publications by authors named "Gangyong Jia"

Infectious keratitis is among the major causes of global blindness. Anterior segment optical coherence tomography (AS-OCT) images allow the characterizing of cross-sectional structures in the cornea with keratitis thus revealing the severity of inflammation, and can also provide 360-degree information on anterior chambers. The development of image analysis methods for such cases, particularly deep learning methods, requires a large number of annotated images, but to date, there is no such open-access AS-OCT image repository.

View Article and Find Full Text PDF

Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly.

View Article and Find Full Text PDF

The thickness of the choroid is considered to be an important indicator of clinical diagnosis. Therefore, accurate choroid segmentation in retinal OCT images is crucial for monitoring various ophthalmic diseases. However, this is still challenging due to the blurry boundaries and interference from other lesions.

View Article and Find Full Text PDF

Schizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes.

View Article and Find Full Text PDF

Precise and rapid categorization of images in the B-scan ultrasound modality is vital for diagnosing ocular diseases. Nevertheless, distinguishing various diseases in ultrasound still challenges experienced ophthalmologists. Thus a novel contrastive disentangled network (CDNet) is developed in this work, aiming to tackle the fine-grained image categorization (FGIC) challenges of ocular abnormalities in ultrasound images, including intraocular tumor (IOT), retinal detachment (RD), posterior scleral staphyloma (PSS), and vitreous hemorrhage (VH).

View Article and Find Full Text PDF

Purpose: The lack of finely annotated pathologic data has limited the application of deep learning systems (DLS) to the automated interpretation of pathologic slides. Therefore, this study develops a robust self-supervised learning (SSL) pathology diagnostic system to automatically detect malignant melanoma (MM) in the eyelid with limited annotation.

Design: Development of a self-supervised diagnosis pipeline based on a public dataset, then refined and tested on a private, real-world clinical dataset.

View Article and Find Full Text PDF

Eyelid malignant melanoma (MM) is a rare disease with high mortality. Accurate diagnosis of such disease is important but challenging. In clinical practice, the diagnosis of MM is currently performed manually by pathologists, which is subjective and biased.

View Article and Find Full Text PDF

Protein succinylation is a novel type of post-translational modification in recent decade years. It played an important role in biological structure and functions verified by experiments. However, it is time consuming and laborious for the wet experimental identification of succinylation sites.

View Article and Find Full Text PDF

Parasites can cause enormous damage to their hosts. Studies have shown that antiparasitic peptides can inhibit the growth and development of parasites and even kill them. Because traditional biological methods to determine the activity of antiparasitic peptides are time-consuming and costly, a method for large-scale prediction of antiparasitic peptides is urgently needed.

View Article and Find Full Text PDF

In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing.

View Article and Find Full Text PDF

Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users' costs.

View Article and Find Full Text PDF