Publications by authors named "Gangxiong Huang"

Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal carcinoma (EC) in China. Although the PD-1 inhibitor pembrolizumab has been approved to treat patients with EC, its therapeutic efficacy is limited. Thus, additional immunotherapeutic targets for EC treatment are needed.

View Article and Find Full Text PDF

Programmed death-1 homolog (PD-1H) is a coinhibitory molecule that negatively regulates T cell-mediated immune responses. In this study, we determined whether ablation of T cell-associated PD-1H could enhance adoptive T cell therapy in experimental tumor models. The expression of PD-1H is upregulated in activated and tumor-infiltrating CD8+ T cells.

View Article and Find Full Text PDF

The application of chimeric antigen receptor (CAR)-T cell therapy in patients with advanced solid tumors remains a significant challenge. Simultaneously targeting antigen and the solid tumor microenvironment are two major factors that greatly impact CAR-T cell therapy outcomes. In this study, we engineered CAR-T cells to specifically target B7-H3, a protein commonly found in solid human tumors, using a single-chain variable fragment (scFv) derived from an anti-B7-H3 monoclonal antibody.

View Article and Find Full Text PDF

The oncogenic epidermal growth factor receptor (EGFR) is commonly overexpressed in solid cancers. The tyrosine kinase activity of EGFR has been a major therapeutic target for cancer; however, the efficacy of EGFR tyrosine kinase inhibitors to treat cancers has been challenged by innate and acquired resistance at the clinic. Accumulating evidence suggests that EGFR possesses kinase-independent pro-survival functions, and that cancer cells are more vulnerable to reduction of EGFR protein than to inhibition of its kinase activity.

View Article and Find Full Text PDF

The metastatic potential of osteosarcoma cells is inversely correlated to cell surface FAS expression. Downregulation of FAS allows osteosarcoma cells to escape FAS ligand-mediated apoptosis when they enter a FAS ligand-positive microenvironment such as the lung. We have previously demonstrated that miR-20a, encoded by the miR-17-92 cluster, downregulates FAS expression in osteosarcoma.

View Article and Find Full Text PDF

There is a crucial need for a new therapeutic approach for osteosarcoma (OS) lung metastasis since this disease remains the main cause of mortality in OS. We previously demonstrated that natural killer (NK) cell therapy has minimal efficacy against OS metastasis. This study determined whether the histone deacetylase inhibitor entinostat could immunosensitize OS cells to NK cell lysis and increases the efficacy of NK cell therapy for OS lung metastasis.

View Article and Find Full Text PDF

The lungs are the most common site for the metastatic spread of osteosarcoma. Success in using chemotherapy to improve overall survival has reached a plateau. Understanding the biologic properties that permit osteosarcoma cells to grow in the lungs may allow the identification of novel therapeutic approaches-the goal being to alter the tumor cells' expression of cell surface proteins so that there is no longer compatibility with the metastatic niche.

View Article and Find Full Text PDF

The ability of osteosarcoma cells to form lung metastases has been inversely correlated to cell surface Fas expression. Downregulation of Fas allows osteosarcoma cells to circumvent FasL-mediated apoptosis upon entrance into the FasL(+) lung microenvironment. However, the mechanism of Fas regulation remains unclear.

View Article and Find Full Text PDF

The treatment of osteosarcoma pulmonary metastases remains a challenge. T cells genetically modified to express a chimeric antigen receptor (CAR), which recognizes a tumor-associated antigen, have shown activity against hematopoietic malignancies in clinical trials, but this requires the identification of a specific receptor on the tumor cell. In the current study, we found that interleukin (IL)-11Rα was selectively expressed on 14 of 16 osteosarcoma patients' lung metastases and four different human osteosarcoma cell lines, indicating that IL-11Rα may be a novel target for CAR-specific T-cell therapy.

View Article and Find Full Text PDF

Background: TC-71 Ewing sarcoma cells overexpress vascular endothelial growth factor (VEGF) with a shift from the 189 to the 165 isoform.

Methods: The effect of CAPER-α on the expression of the VEGF isoforms, tumor growth, and vessel density was analyzed after transfection of TC-71 cells with CAPER-α cDNA or siRNA.

Results: CAPER-α correlated inversely with the VEGF(165) /VEGF(189) mRNA ratio.

View Article and Find Full Text PDF

Fas expression in osteosarcoma (OS) cells is inversely correlated with the metastatic potential of OS to the lung. The purpose of this study was to determine whether loss of Fas expression in metastatic OS cells is secondary to DNA methylation of CpG islands in the Fas gene. SAOS-2 cells have high levels of Fas expression and do not form lung metastases when injected intravenously, whereas LM7 cells have low levels of Fas expression and do produce lung metastases.

View Article and Find Full Text PDF

Chemoresistance is a major reason that patients with osteosarcoma fail to achieve a lasting chemotherapy response, and it contributes to disease relapse, progression, and death. Human glutathione S-transferase P1 (GSTP1), a phase II detoxification enzyme, contributes to chemoresistance in many cancers. However, the role of GSTP1 in osteosarcoma chemoresistance is ill defined.

View Article and Find Full Text PDF

The first intracellular loop (iLP1, residues 39-51) of human prostacyclin receptor (IP) was proposed to be involved in signaling via its interaction with the Galphas protein. First, evidence of the IP iLP1 interaction with the C-terminus of the Galphas protein was observed by the fluorescence and NMR spectroscopy using the synthetic peptide (Galphas-Ct) mimicking the C-terminal 11 residues of the Galphas protein in the presence of a constrained synthetic peptide mimicking the IP iLP1. Then, the residues (Arg42, Ala44, and Arg45) in the IP iLP1 peptide possibly involved in contacting the Galphas-Ct peptide were initially assigned by observation of the significant proton resonance shifts of the side chains of the constrained IP iLP1 peptide using 2D (1)H NMR spectroscopy.

View Article and Find Full Text PDF

The conformation of a constrained peptide mimicking the putative first intracellular domain (iLP1) of thromboxane A(2) receptor (TP) was determined by (1)H 2D NMR spectroscopy. Through completed assignments of TOCSY, DQF-COSY, and NOESY spectra, a NMR structure of the peptide showed a beta-turn in residues 56-59 and a short helical structure in the residues 63-66. It suggests that residues 63-66 may be part of the second transmembrane domain (TM), and that Arg60, in an exposed position on the outer surface of the loop, may be involved in signaling through charge contact with Gq protein.

View Article and Find Full Text PDF

The second extracellular loop (eLP2) of the thromboxane A(2) receptor (TP) had been proposed to be involved in ligand binding. Through two-dimensional (1)H NMR experiments, the overall three-dimensional structure of a constrained synthetic peptide mimicking the eLP2 had been determined by our group (Ruan, K.-H.

View Article and Find Full Text PDF

Background: It was recently discovered that prostacyclin constituted 40-50% of prostaglandins (PG) produced by minced human oviduct. It is well established that prostacyclin relaxes vascular smooth muscle, but whether oviductal smooth muscle synthesizes prostacyclin and whether its contraction is affected by prostacyclin remain unclear.

Methods: Smooth muscle microdissected from human oviducts was used for the study.

View Article and Find Full Text PDF