Based on credible advantages, organic materials have received more and more attention in memristor and synapse emulation. In particular, an implementation of the ionic pathway as a dielectric layer is essential for organic materials used as building blocks of memristor and artificial synaptic devices. Herein, we describe an evaluation of the use of positive and negative polyelectrolytes as dielectric layers for a memristor with calcium ion (Ca) doping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Memristors will be critical components in the next generation of digital technology and artificial synapses. Researchers are investigating innovative mechanistic understanding of the memristor devices based on low-cost, solution-processable, and organic materials as promising candidates. Here, we demonstrate a novel polyelectrolyte-based memristor device, which is simply prepared by spin-coating poly(acrylic acid) (PAA) and polyethylenimine (PEI) on an indium tin oxide (ITO) substrate followed by a magnetron sputtering of the ITO as the top electrode.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
New types of diodes, such as molecular and ionic diodes, have drawn considerable attention because of their advantages from the viewpoint of potential applications such as the downscaling of electronic devices, ionic circuits, and biological systems. Researchers are motivated to develop a simple, scalable, and promising system that can overcome the existing limitations because this can enable their application in various devices. This study proposes a system that not only integrates the advantages of ionic and single-molecule diodes but also avoids their disadvantages, denoting the rectification behavior due to ionic charge-selective electron transfer between two redox species, i.
View Article and Find Full Text PDFChem Commun (Camb)
February 2018
Here, we demonstrate a novel solution-based route for deposition of tin monosulfide (SnS) thin films, which are emerging, non-toxic absorber materials for low-cost and large-scale PV applications via thermo-reducing Sn(iv) to Sn(ii). Upon optimizing the morphology of the SnS layer via adding a seed layer, the SnS-based hybrid solar cells show promising photocurrent conversion efficiencies.
View Article and Find Full Text PDFChemical bath deposition is an attractive technique to form single- and multilayered metal oxide/chalcogenide films on electrode surfaces. However, the occurrence of desorption and/or ion-exchange reaction during subsequent chemical bath deposition has so far limited preparation of multilayered metal oxide/chalcogenide films. In this paper, we report a method to prevent desorption and ion-exchange reaction of metal oxide/chalcogenide on electrode surfaces using a polyelectrolyte multilayer during sequential chemical bath deposition.
View Article and Find Full Text PDFZnO nanoparticles (NPs) coated with amorphous and crystalline CdS quantum dots (QDs) were successfully synthesized through chemical bath deposition (CBD) process. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been utilized to characterize the samples morphology and structural properties. The conduction band of CdS QDs is much higher than the ZnO conduction band facilitates electron transfer process through cascade system.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2011
Crystalline beta-Bi2O3 was synthesized through pH-dependent chemical bath deposition process, altering the morphology and evolution from nanoparticles (approximately 40 nm) at pH 9 to platelets (approximately 40 nm width and 0.8 microm length) at pH 12. In-situ aniline nucleation and growth at less basic condition on the beta-Bi2O3 increased the surface area and specific capacitance of the device.
View Article and Find Full Text PDFThe selective swelling behavior of polyelectrolyte multilayer (PEM) films prepared by layer-by-layer (L-b-L) assembly influences the ion-permeability in contrast to surface charge density of the films. The cation terminated polyethylene amine (PEI) and anion terminated polyacrylic acid (PAA) were dissolved in DI water, and the pH was adjusted to 10 and 4, respectively, exemplifies thick denser film with good layering structure. The layered polyelectrolyte films has selective swelling behavior at pH 4 (PEI) or pH 10 (PAA), influences the permeability of both Ru(NH3)6(2+) and Fe(CN)6(3-) rather than surface charge character or film charge density.
View Article and Find Full Text PDFThis paper reports the use of poly(3,4-ethylenedioxythiophen):poly(styrene sulfonate) (PEDOT: PSS) as a protective layer to reduce the photodegradation and recombination processes of CdSe nanofiber films. Due to reduced photodegradation and recombination processes of photoelectrochemical cell-based CdSe nanofiber films, the power conversion efficiency of CdSe nanofibers films was 1.81% in the presence of PEDOT:PSS layers under the 1.
View Article and Find Full Text PDFThis paper reports the use of Au nanoparticles (NPs) as electron transfer bridge layers to improve the photocurrent of viologen/Ru complex-based photoelectrochemical cells. The Ru complex/ viologen/Au NPs on electrodes were prepared using self-assembled monolayers. The cell system showed an excellent photocurrent of 25 nA/cm2 under the 1.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2008
High efficiency and long lifetime, blue polymer light-emitting diodes were obtained by adding a thin interlayer, which was fabricated by a layer-by-layer self-assembly technique between poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) hole transporting and emissive polymer layers in the device configuration of indium tin oxide (ITO)/PEDOT:PSS (65 nm)/interlayer (10-30 nm)/emissive polymer (70 nm)/BaF2 (2 nm)/Ca (50 nm)/Al (300 nm). The interlayer, (PPV/PSS)n, consisted of self-assembled multilayers of the conjugated polymer, poly (p-phenylenevinylene) (PPV), and the polyelectrolyte, poly (styrene sulfonic acid) (PSS). Electroluminescence (EL) characteristics such as luminescence and current efficiency of the devices were enhanced by the addition of the interlayer.
View Article and Find Full Text PDFHeterojunction of hydrophobic poly(1,4-phenylenevinylene) (PPV) on hydrophilic CdS nanoparticles was successfully prepared by the multi-layering of poly(p-xylene tetrahydrothiophenium chloride) (pre-PPV: precursor of PPV polymer) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) in an aqueous solution followed by a thermal treatment. CdS nanoparticles thin films were prepared on tin-doped indium oxide (ITO) by a chemical-bath-deposition method. The CdS surface was hydrophilic with low water contact angle of 15 degrees.
View Article and Find Full Text PDF