Adverse cardiac mechanical remodeling is critical for the progression of heart failure following myocardial infarction (MI). We previously demonstrated the involvement of RIP3-mediated necroptosis in the loss of functional cardiomyocytes and cardiac dysfunction post-MI. Herein, we investigated the role of RIP3 in NOD-like receptor protein 3 (NLRP3)-mediated inflammation and evaluated the effects of RIP3 knockdown on myocardial mechanics and functional changes after MI.
View Article and Find Full Text PDFThe activation Gq protein-coupled receptors (GPCRs) is a crucial factor contributing to maladaptive cardiac hypertrophy, and dysregulation of autophagy is implicated in its prohypertrophic effects. Previous studies have shown that diacylglycerol kinase zeta (DGKζ) can suppress cardiac hypertrophy by inhibiting the diacylglycerol (DAG)-PKC pathway in response to mechanical strain or growth agonists such as endothelin-1 (ET-1). However, the involvement of DGKζ in autophagy regulation remains poorly understood.
View Article and Find Full Text PDF