Publications by authors named "Gangli An"

Vδ1T cells, a rare subset of γδT cells, hold promise for treating solid tumors. Unlike conventional T cells, they recognize tumor antigens independently of the MHC antigen presentation pathway, making them a potential "off-the-shelf" cell therapy product. However, isolation and activation of Vδ1T cells is challenging, which has limited their clinical investigation.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates the effectiveness of four types of CD19/CD22 bispecific CAR-T cells to improve treatment outcomes for B-cell tumors, addressing the high relapse rates seen with traditional CD19 CAR-T therapy.
  • Researchers compared these CAR-T cell structures based on their cytotoxicity, cytokine secretion, and ability to sustain tumor killing in laboratory settings, as well as in live mouse models.
  • Findings reveal that two specific bispecific CAR-T cell structures performed significantly better in controlling tumor growth, even when CD19 levels were low or absent, suggesting a promising new approach to enhancing CAR-T therapy.
View Article and Find Full Text PDF

Aims: Limited efficacy of chimeric antigen receptor T (CAR-T) cells in treating solid tumors is largely due to the antigen heterogeneity and immunosuppressive tumor microenvironment (TME). B7-H3 is over-expressed in most kind of solid tumors, making it a promising target for cancer treatment. This study aims to explore the effect of B7-H3-CAR-T therapy combined with radiotherapy in treating solid tumor models.

View Article and Find Full Text PDF

CD7 protein as a target is being used to treat CD7 lymphoma; however, the role of CD7 in the hematopoietic system remains largely unknown. Therefore, we evaluated the effects of CD7 KO in mice. The differentiation of the hematopoietic system in the bone marrow and the number of various cell types in the thymus and spleen did not differ between CD7 KO and WT mice.

View Article and Find Full Text PDF

Background And Aims: Chimeric antigen receptor (CAR)-T cell therapy is a novel type of immunotherapy. However, the use of CAR-T cells to treat acute myeloid leukaemia (AML) has limitations. B7-H3 is expressed in several malignancies, including some types of AML cells.

View Article and Find Full Text PDF

Reprimo (RPRM), a target gene of p53, is a known tumor suppressor. DNA damage induces RPRM, which triggers p53-dependent G2 arrest by inhibiting cyclin B1/Cdc2 complex activation and promotes DNA damage-induced apoptosis. RPRM negatively regulates ataxia-telangiectasia mutated by promoting its nuclear-cytoplasmic translocation and degradation, thus inhibiting DNA damage.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell immunotherapies targeting CD19 can achieve impressive clinical remission rates in the treatment of B-cell non-Hodgkin lymphoma and B-cell acute lymphoblastic leukemia. However, relapse after CD19-CAR T treatment remains a major issue, with CD19 antigen-negative relapse being one of the main reasons. CD22, another antigen expressed in a B-cell lineage-specific pattern, is retained following CD19 loss.

View Article and Find Full Text PDF

ZKSCAN3 encodes a zinc-finger transcription factor that regulates the expression of important genes and plays a significant role in tumor development, pathogenesis, and metastasis. However, its biological functions under normal physiological conditions remain largely unknown. In our previous studies, using flow cytometry, we found that the deletion of Zkscan3 may cause abnormal erythropoiesis.

View Article and Find Full Text PDF

The great success of chimeric antigen receptor T (CAR-T)-cell therapy in B-cell malignancies has significantly promoted its rapid expansion to other targets and indications, including T-cell malignancies and acute myeloid leukemia. However, owing to the life-threatening T-cell hypoplasia caused by CD7-CAR-T cells specific cytotoxic against normal T cells, as well as CAR-T cell-fratricide caused by the shared CD7 antigen on the T-cell surface, the clinical application of CD7 as a potential target for CD7 malignancies is lagging. Here, we generated T cells using an anti-CD7 nanobody fragment coupled with an endoplasmic reticulum/Golgi retention domain and demonstrated that these cells transduced with CD7-CAR could prevent fratricide and achieve expansion.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) αβ T cell adoptive immunotherapy has shown great promise for improving cancer treatment. However, there are several hurdles to overcome for the wide clinical application of CAR-αβ T cells therapy, including side effects and a limited T cells source from cancer patients. Therefore, we sought to identify an alternative T cell subset that could avoid these limitations and improve the effectiveness of CAR-T immunotherapy.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) immunotherapy has recently shown promise in clinical trials for B-cell malignancies; however, designing CARs for T-cell based diseases remain a challenge since most target antigens are shared between normal and malignant cells, leading to CAR-T cell fratricide. CD7 is highly expressed in T-cell acute lymphoblastic leukemia (T-ALL), but it is not expressed in one small group of normal T lymphocytes. Here, we constructed monovalent CD7-CAR-NK-92MI and bivalent dCD7-CAR-NK-92MI cells using the CD7 nanobody VHH6 sequences from our laboratory.

View Article and Find Full Text PDF

Tumor immunotherapy has shown great progress for the treatment of cancer; however, both endogenous and exogenous T cells are inhibited by the immunosuppressive tumor microenvironment. Tumor-associated macrophages (TAMs) in the microenvironment play pivotal and complex roles in tumor development and progression. Macrophages are categorized as M1 and M2 types.

View Article and Find Full Text PDF

It has been long sought to specifically eliminate B-cell clones that generate autoreactive antibodies, while sparing the immune system when combating autoimmune disease. Although it was impossible to achieve this goal before, newly developed techniques have made it feasible today. Autoantibodies against La/SSB were involved in several autoimmune diseases.

View Article and Find Full Text PDF

Natural killer (NK) cells play a pivotal role in monoclonal antibody-mediated immunotherapy through the antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. NK-92MI is an interleukin-2 (IL-2)-independent cell line, which was derived from NK-92 cells with superior cytotoxicity toward a wide range of tumor cells in vitro and in vivo. Nonetheless, the Fc-receptor (CD16) that usually mediates ADCC is absent in NK-92 and NK-92MI cells.

View Article and Find Full Text PDF

Various CD7-targeting immunotoxins have been tested for its potential in treating CD7+ malignant patients but none of those immunotoxins was approved clinically because of lacking enough efficacy and safety. Here we successfully constructed the monovalent and bivalent CD7 nanobody-based immunotoxins PG001 and PG002, both conjugated with a truncated derivative of Pseudomonas exotoxin A respectively. The prokaryotic system expressed immunotoxins not only maintained their binding specificity for CD7-positive cells with a Kd of 16.

View Article and Find Full Text PDF

Syndecan-1 (CD138), a heparan sulfate proteoglycan, acts as a co-receptor for growth factors and chemokines and is a molecular marker associated with the epithelial-mesenchymal transition during development and carcinogenesis. In this study, we generated two specific mouse anti-human CD138 monoclonal antibodies (mAbs, clone ID: 480CT5.4.

View Article and Find Full Text PDF

Impairments in mitochondrial energy metabolism are thought to be involved in many neurodegenerative diseases. The mitochondrial inhibitor 3-nitropropionic acid (3-NP) induces striatal pathology mimicking neurodegeneration in vivo. Previous studies showed that 3-NP also triggered autophagy activation and apoptosis.

View Article and Find Full Text PDF

Bispecific antibodies play an important role in immunotherapy. They have received intense interest from pharmaceutical enterprises. The first antibody drug, OKT3 (muromonab-CD3), showed great performance in clinical treatment.

View Article and Find Full Text PDF

In our previous studies, ZKSCAN3 was demonstrated to be over-expressed in invasive colonic tumor cells and their liver metastases, but minimally expressed in adjacent non-transformed tissues. Further preliminary data showed that ZKSCAN3 was expressed in a majority of prostate cancer patient samples, but not in normal prostate tissues. Moreover, the ZKSCAN3 protein is highly expressed in the PC3 prostate cancer cell line, which has high metastatic potential, but little expression was observed in non-metastatic prostate cancer cell lines.

View Article and Find Full Text PDF

Purpose: This study investigated whether a 200-km run modulates signaling pathways implicated in cellular stress in skeletal muscle, with special attention paid to the endoplasmic reticulum (ER) stress and to the activation of the ubiquitin-proteasome pathway.

Methods: Eight men ran 200 km (28 h 03 min ± 2 h 01 min). Two muscle biopsies were obtained from the vastus lateralis muscle 2 wk before and 3 h after the race.

View Article and Find Full Text PDF