Publications by authors named "Ganglei Li"

RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity.

View Article and Find Full Text PDF

Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases.

View Article and Find Full Text PDF

() has drawn much attention as an important gut microbe strain in recent years. can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers.

View Article and Find Full Text PDF
Article Synopsis
  • RNA modifications are important in how tumors grow and spread, but we don't know much about them in glioblastoma (GBM).
  • In this study, researchers created a GBM score based on certain genes that showed different RNA modification patterns, which helped them look at how these patterns relate to the tumor's environment.
  • They found that patients with a higher GBM score had worse survival chances and that this score could help predict how well patients might respond to treatments.
View Article and Find Full Text PDF

CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers.

View Article and Find Full Text PDF

Ischemic stroke is a leading cause of disability and mortality worldwide. Thus, it is urgent to explore its pathophysiological mechanisms and find new therapeutic strategies for its successful treatment. The relationship between oxidative stress and ischemic stroke is increasingly appreciated and attracting considerable attention.

View Article and Find Full Text PDF

Metabolic signatures are frequently observed in cancer and are starting to be recognized as important regulators for tumor progression and therapy. Because metabolism genes are involved in tumor initiation and progression, little is known about the metabolic genomic profiles in low-grade glioma (LGG). Here, we applied bioinformatics analysis to determine the metabolic characteristics of patients with LGG from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA).

View Article and Find Full Text PDF

The dysregulation of mRNA translation is common in malignancies and may lead to tumorigenesis and progression. Eukaryotic initiation factor 4A (eIF4A) proteins are essential for translation, exhibit bidirectional RNA helicase function, and act as RNA-dependent ATPases. In this review, we explored the predicted structures of the three eIF4A isoforms (eIF4A1, eIF4A2, and eIF4A3), and discussed possible explanations for which function during different translation stages (initiation, mRNA localization, export, and mRNA splicing).

View Article and Find Full Text PDF

Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) has a high mortality rate and causes long-term disability in many patients, often associated with cognitive impairment. However, the pathogenesis of delayed brain dysfunction after SAH is not fully understood. A growing body of evidence suggests that neuroinflammation and oxidative stress play a negative role in neurofunctional deficits.

View Article and Find Full Text PDF

The ALYREF protein acts as a crucial epigenetic regulator in several cancers. However, the specific expression levels and functional roles of ALYREF in cancers are largely unknown, including for hepatocellular carcinoma (HCC). In a pan-cancer tissue analysis that included HCC, we assessed the expression of ALYREF compared to normal tissues using The Cancer Genome Atlas database.

View Article and Find Full Text PDF

Mitochondrial pyruvate carrier 1 (MPC1) is a key metabolic protein that regulates the transport of pyruvate into the mitochondrial inner membrane. MPC1 deficiency may cause metabolic reprogramming. However, whether and how MPC1 controls mitochondrial oxidative capacity in cancer are still relatively unknown.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) damage is a momentous pathological process of ischaemic stroke. NADPH oxidases 4 (NOX4) boosts BBB damage after ischaemic stroke and its expression can be influenced by microRNAs. This study aimed to probe into whether miR-92b influenced the BBB damage after ischaemic stroke by regulating NOX4 expression.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) represent a group of ncRNAs with more than 200 nucleotides. These RNAs can specifically regulate gene expression at both the transcriptional and the post-transcriptional levels, and increasing evidence indicates that they play vital roles in a variety of disease-related cellular processes. The lncRNA GAS8 antisense RNA 1 (GAS8-AS1, also known as C16orf3) is located in the second intron of GAS8 and has been reported to be both abnormally expressed in several diseases and closely correlated with many clinical characteristics.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) refer to elements of genomic transcription with more than 200 nucleotides that are not translated into proteins, but have crucial roles in cancer progression. MAGI2-AS3, a novel lncRNA, has been reported to be aberrantly expressed in many solid tumors. Increasingly, studies have demonstrated that MAGI2-AS3 expression is significantly correlated with patient clinical characteristics, and that MAGI2-AS3 can regulate multiple biological processes through target-gene regulation.

View Article and Find Full Text PDF

Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease. Necroptosis is a common form of programmed cell death in the liver. Necroptosis can be activated by ligands of death receptors, which then interact with receptor-interactive protein kinases 1 (RIPK1).

View Article and Find Full Text PDF