Amorphous polymer-derived silicon-oxycarbide (SiOC) ceramics have a high theoretical capacity and good structural stability, making them suitable anode materials for lithium-ion batteries. However, SiOC has low electronic conductivity, poor transport properties, low initial Couloumbic efficiency, and limited rate capability. Therefore, there is an urgent need to explore an efficient SiOC-based anode material that could mitigate the abovementioned limitations.
View Article and Find Full Text PDFUnderstanding the role of graphene in the thermal stability and pore morphology of polymer derived silicon oxycarbide is crucial for electrochemical energy storage and hydrogen storage applications. Here in this work, we report the synthesis of graphene nanoplatelets dispersed silicon oxycarbide ceramics by the polymer to ceramic synthesis route. Samples containing graphene and without graphene are subjected to different pyrolysis conditions and are characterized using FT-IR, XPS, Raman spectroscopy, XRD, FE-SEM, HR-TEM, and BET.
View Article and Find Full Text PDF