Background: Fetal alcohol spectrum disorder (FASD) is caused by prenatal alcohol exposure (PAE), the intake of ethanol (C H OH) during pregnancy. Features of FASD cover a range of structural and functional defects including congenital heart defects (CHDs). Folic acid and choline, contributors of methyl groups to one-carbon metabolism (OCM), prevent CHDs in humans.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2016
Cardiac neural crest cell (CNCC) ablation creates congenital heart defects (CHDs) that resemble those observed in many syndromes with craniofacial and cardiac consequences. The loss of CNCCs causes a variety of great vessel defects, including persistent truncus arteriosus and double-outlet right ventricle. However, because of the lack of quantitative volumetric measurements, less severe defects, such as great vessel size changes and valve defects, have not been assessed.
View Article and Find Full Text PDFDisturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited.
View Article and Find Full Text PDFBirth Defects Res C Embryo Today
September 2014
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels.
View Article and Find Full Text PDF