Mol Plant Microbe Interact
February 2020
isolates (members of the pathotype) of are divided into two subgroups, EC-I and EC-II, differentiated by molecular markers. A multilocus phylogenetic analysis revealed that these subgroups are very close to isolates. EC-II and isolates were exclusively virulent on finger millet and weeping lovegrass, respectively, while EC-I isolates were virulent on both.
View Article and Find Full Text PDFThe evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution.
View Article and Find Full Text PDFThe induction of rapid cell death is an effective strategy for plants to restrict biotrophic and hemi-biotrophic pathogens at the infection site. However, activation of cell death comes at a high cost, as dead cells will no longer be available for defense responses nor general metabolic processes. In addition, necrotrophic pathogens that thrive on dead tissue, take advantage of cell death-triggering mechanisms.
View Article and Find Full Text PDFIn the process (BC3F1 generation) of backcrossing an Avena isolate of Pyricularia oryzae with a Triticum isolate, color mutants with white mycelia were obtained. These white mutants lacked virulence on all (31/31) hexaploid and most (28/32) tetraploid wheat lines tested. In a BC4F1 population, white and black cultures segregated in a 1:1 ratio, suggesting that the mutant phenotype is controlled by a single gene.
View Article and Find Full Text PDFBlack spot disease, Alternaria alternata Japanese pear pathotype, produces the host-specific toxin AK-toxin, an important pathogenicity factor. Previously, we have found that hydrogen peroxide is produced in the hyphal cell wall at the plant-pathogen interaction site, suggesting that the fungal reactive oxygen species (ROS) generation machinery is important for pathogenicity. In this study, we identified two NADPH oxidase (NoxA and NoxB) genes and produced nox disruption mutants.
View Article and Find Full Text PDFBarley cultivars show various patterns of resistance against isolates of Magnaporthe oryzae and M. grisea. Genetic mechanisms of the resistance of five representative barley cultivars were examined using a highly susceptible barley cultivar, 'Nigrate', as a common parent of genetic crosses.
View Article and Find Full Text PDFIn the Japanese pear pathotype of Alternaria alternata, H2O2 is generated solely from penetration pegs and not from other portions of subcuticular hyphae within the pectin layers of host leaves. A close association between H2O2 generation and fungal aggressiveness is expected because the pegs are important for fungal penetration into the host epidermis. To determine the potential role of reactive oxygen species in microbial pathogenicity, we studied the inhibitory effects of the antioxidant reagent ascorbic acid and the NADPH oxidase inhibitor diphenylene iodonium on infection of the pathogen.
View Article and Find Full Text PDFEleusine isolates (members of the Eleusine subgroup) of Pyricularia oryzae are divided into two groups, Ec-I and Ec-II, differentiated by molecular markers. A multilocus phylogenetic analysis and DNA fingerprinting suggested that Ec-I isolates are very close to Eragrostis isolates rather than Ec-II isolates. Infection assays revealed that Ec-II and Eragrostis isolates were exclusively virulent on finger millet and weeping lovegrass, respectively, whereas Ec-I isolates were virulent on both.
View Article and Find Full Text PDFSmall GTPases of the Rac group play a key regulatory role in NADPH oxidase catalysed production of reactive oxygen species (ROS) in mammals and plants, but very little evidence is available for a corresponding role in fungi. We recently showed that ROS produced by a specific fungal NADPH oxidase isoform, NoxA, are crucial in regulating hyphal morphogenesis and growth in the mutualistic symbiotic interaction between Epichloë festucae and perennial ryegrass. We demonstrate here that E.
View Article and Find Full Text PDF