The purpose of this study was to improve the tribological properties of polydimethylsiloxane (PDMS) by mixing lubricants into it. The chemical composition, physical/chemical bonding state, and mechanical properties of the PDMS/lubricant composites (PLCs), prepared by mixing PDMS and lubricants at different ratios, were analyzed. With increasing lubricant content, the friction coefficient initially decreased, reaching a minimum value at a PDMS/lubricant ratio of 100 : 10; however, it gradually increased with a further increase in the lubricant content.
View Article and Find Full Text PDFPolydimethylsiloxane (PDMS) has many advantages, but the friction coefficient generated by contact with the counter material is high. The purpose of this study is to reduce the friction coefficient by forming hierarchical micro/nanopatterns on the PDMS surface using the imprinting method. In addition, the optimum conditions for reducing the friction coefficient by controlling the sliding speed and normal load were determined.
View Article and Find Full Text PDFPolydimethylsiloxane (PDMS), a silicone-based elastomeric polymer, is generally cured by applying heat to a mixture of a PDMS base and crosslinking agent, and its material properties differ according to the mixing ratio and heating conditions. In this study, we analyzed the effects of different curing processes on the various properties of PDMS thin films prepared by mixing a PDMS solution comprising a PDMS base and a crosslinking agent in a ratio of 10:1. The PDMS thin films were cured using three heat transfer methods: convection heat transfer using an oven, conduction heat transfer using a hotplate, and conduction heat transfer using an ultrasonic device that generates heat internally from ultrasonic vibrations.
View Article and Find Full Text PDF