Publications by authors named "Gang-Biao Jiang"

In the realm of neural regeneration post-spinal cord injury, hydrogel scaffolds carrying induced neural stem cells (iNSCs) have demonstrated significant potential. However, challenges such as graft rejection and dysfunction caused by mitochondrial damage persist after transplantation, presenting formidable barriers. Tacrolimus, known for its dual role as an immunosuppressant and promoter of neural regeneration, holds the potential for enhancing iNSC transplantation.

View Article and Find Full Text PDF

Cadmium (Cd) removal from soil is crucial as Cd enters the food chain and affect food safety, thus impose severe threaten to human health. We developed PPC@PC-Fe, a dual-functional core-shell sphere for efficient soil Cd reduction. The shell (PPC) was composed of encapsulated citric acid (CA) in a polylactic acid (PLA) and polyethylene glycol (PEG) network, which endows a function of activating Cd; and the core (PC-Fe) consisted of a polyacrylic acid/carboxymethyl chitosan (PAA/CMC) hydrogel with FeO nanoparticles to adsorb adjacent activated Cd.

View Article and Find Full Text PDF

Antibiotic abuse is increasing the present rate of drug-resistant bacterial wound infections, producing a significant healthcare burden globally. Herein, we prepared a pH-responsive CMCS/PVP/TA (CPT) multifunctional hydrogel dressing by embedding the natural plant extract TA as a nonantibiotic and cross-linking agent in carboxymethyl chitosan (CMCS) and polyvinylpyrrolidone (PVP) to prompt wound healing. The CPT hydrogel demonstrated excellent self-healing, self-adaptive, and adhesion properties to match different wound requirements.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in massive neuronal death, axonal disruption, and cascading inflammatory response, which causes further damage to impaired neurons. The survived neurons with damaged function fail to form effective neuronal circuits. It is mainly caused by the neuroinflammatory microenvironment at injury sites and regenerated axons without guidance.

View Article and Find Full Text PDF

The mechanical mismatch between soft hydrated tissues and sutures has become a common negative impact on wound healing process. A novel method of coating multilayer polymer shells is thus reported to improve the mechanical performance of hydrogel sutures. It is suitable for tissue patching and shows advantages of convenient, efficient, and biosafety.

View Article and Find Full Text PDF

The treatment of traumatic spinal cord injury (SCI) remains challenging as the neuron regeneration is impaired by irregular cavity and apoptosis. An injectable in situ gelling hydrogel is therefore developed for the local delivery of cannabidiol (CBD) through a novel method based on polyelectrolyte (PEC) interaction of sodium carboxymethylcellulose (CMC) and chitosan (CS). It can be injected into the spinal cord cavity with a 26-gauge syringe before gelation, and gelled after 110 ± 10 s.

View Article and Find Full Text PDF

Self-regenerative hydrogels have recently been developed, and represent a special type of self-healing hydrogels with the ability to restore a dehydrated hydrogel with physical damage. In this study, a self-regenerative hydrogel (COCu) based on two chitosan polymers assembled by slow-released Cu is developed. The COCu hydrogel displays an excellent regeneration ability after being dehydrated and fractured.

View Article and Find Full Text PDF

Harmful algal blooms induce severe environmental problems. It is challenging to remove algae by the current available treatments involving complicate process and costly instruments. Here, we developed a CaO@PEG-loaded water-soluble self-branched chitosan (CP-SBC) system, which can remove algae from water in one-step without additional instrumentation.

View Article and Find Full Text PDF

Practical application of powder photocatalysts is far from satisfying due to their low photon utilization, inconvenient recovery and potential environmental risk. In this study, an easily recoverable, environmentally friendly and highly transparent floatable magnetic photocatalyst carrier was prepared based on biopolymer alginate and FeO particles. Further, three different types of photocatalysts were chosen as model semiconductor photocatalysts and loaded on the shell of the carriers.

View Article and Find Full Text PDF

Bone related-bacterial diseases including wound infections and osteomyelitis (OM) remain a serious problem accompanied with amputation in most severe cases. In this work, we report an exceptional effective antibacterial alginate aerogel, which consists of tigecycline (TGC) and octahedral Cu crystal as an organo-inorganic synergy platform for antibacterial and local infection therapy applications. The alginate aerogel could greatly prolong the release of copper ions and maintain effective antibacterial concentration over 18 days.

View Article and Find Full Text PDF

The application of iron oxide nanoparticles (IONs) is often limited by agglomeration and low loading. Here, we presented a facile phase change material (PCM) -based sol-gel strategy for the fabrication of α-FeO nanoparticles. Rosin was used as the PCM in the sol-gel process and the carbon-based substrate of α-FeO nanoparticles in the thermal process.

View Article and Find Full Text PDF

To meet the increasing demands for ultrasensitivity in monitoring trace amounts of low-abundance early biomarkers or environmental toxins, the development of a robust sensing system is urgently needed. Here, a novel signal cascade strategy is reported via an ultrasensitive polymeric sensing system (UPSS) composed of gold nanoparticle (gNP)-decorated polymer, which enables gNP aggregation in polymeric network and electrical conductance change upon specific aptamer-based biomolecular recognition. Ultralow concentrations of thrombin (10 m) as well as a low molecular weight anatoxin (165 Da, 10 m) are detected selectively and reproducibly.

View Article and Find Full Text PDF

Fungal keratitis, a severe ocular disease, is one of the leading causes of ocular morbidity and blindness, yet it is often neglected, especially in developing countries. Therapeutic efficacy of traditional treatment such as eye drops is very limited due to poor bioavailability, whereas intraocular injection might cause serious side effects. Herein, we designed and fabricated a hybrid hydrogel-based contact lens which comprises quaternized chitosan (HTCC), silver nanoparticles, and graphene oxide (GO) with a combination of antibacterial and antifungal functions.

View Article and Find Full Text PDF

Treatment of hexavalent chromium (Cr(VI)) spill accident is a great challenge due to its high toxicity, sudden and extensiveness. In this study, we designed and fabricated a hierarchical, ordered and macroporous structured alginate sphere to support in-situ synthesized zero-valent iron nanoparticle (the alginate-nZVI sphere). Field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS) images showed well dispersion of nZVI on the composite.

View Article and Find Full Text PDF

Phosphate rock (PHR), a traditional fertilizer, is abundant, but is hard to be utilized by plants. To improve the utilization of PHR, and to integrate water-retaining and controlled-release fertilizers, an agricultural superabsorbent polymer based on sulfonated corn starch/poly (acrylic acid) embedding phosphate rock (SCS/PAA/PHR) was prepared. PHR can be suspended and well-dispersed in SCS/PAA by sulfonated corn starch (SCS).

View Article and Find Full Text PDF

To improve the water-fertilizer utilization ratio and mitigate the environmental contamination, an eco-friendly superabsorbent polymer (SPA), modified sugarcane bagasse/poly (acrylic acid) embedding phosphate rock (MSB/PAA/PHR), was prepared. Ammonia, phosphate rock (PHR) and KOH were admixed in the presence of acrylic acid to provide nitrogen (N), phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent polymer (SAP) were investigated.

View Article and Find Full Text PDF

Tetraethylenepentamine (TEPA) modified sugarcane bagasse (SB), a novel biosorbent (TEPA-MSB), was proved to be an effective adsorbent for anionic dyes due to the introduced functional amino groups. FTIR, TG and DSC analysis were employed to characterize the sorbent. The effects of pH, temperature, contact time and initial concentration of dye on the adsorption of eosin Y were investigated.

View Article and Find Full Text PDF

Removal of a basic dye (Methylene Blue) from aqueous solution was investigated using a cross-linked succinyl-chitosan (SCCS) as sorbent. The chemical structures of chitosan and its derivatives were testified by FT-IR. X-ray diffraction, DTG analysis and swelling measurements were conducted to clarify the characteristics of the chemically modified chitosan.

View Article and Find Full Text PDF

To utilize the contribution of introduced amino groups to the adsorption of an anionic dye (eosin Y), a batch adsorption system was applied to study the adsorption of eosin Y from aqueous solution by tetraethylenepentamine (TEPA) modified chitosan (TEPA-CS). Experiments were carried out as a function of particle size, initial pH, agitation rate, adsorbent dosage, agitation period, temperature and initial concentration of eosin Y. The Langmuir and Freundlich models were used to fit the adsorption isotherms.

View Article and Find Full Text PDF

Objective: To develop a chitosan (CH)/polyethylene glycols succinate acid (PEG-SA)-mediated mitomycin C (MMC) delivery system and investigate its drug release characteristics in vitro and its effect against scar tissue adhesion in vivo.

Methods: Mitomycin C loading in the composite CH/PEG-SA/MMC films was determined using ultraviolet. The freeze-dried films were dispersed in 1 ml PBS (pH7.

View Article and Find Full Text PDF

Chitosan-based polymer micelles have a splendid outlook for drug delivery owing to the interesting properties, abundance, and low cost of chitosan. A new method of preparation of water-soluble N-palmitoyl chitosan (PLCS) which can form micelles in water is developed in this paper. The preparation of PLCS was carried out by swollen chitosan coupling with palmitic anhydride in dimethyl sulfoxide (DMSO).

View Article and Find Full Text PDF