Porous polymers have emerged as promising candidates for photocatalytic hydrogen evolution, but their structural rigidity and crosslinking pose significant challenges, often leading to charge recombination and inadequate water/polymer interfaces. This study introduces novel block copolymers (BCPs) comprising a rigid pyrene core and various fluorinated benzene structures coupled with flexible diethyl ether-based hydrophilic units. By computationally predicting monomer structures and dipoles, the relationship between structure and function in these BCPs is examined, particularly focusing on local charge delocalization.
View Article and Find Full Text PDFAll-inorganic lead halide perovskite nanocrystals (NCs) have excellent optoelectronic properties and promising applications. Improving the stability of inorganic halide NCs and optimizing their photoluminescence quantum yields (PLQY) has become an urgent task. Constructing core-shell structures is an effective method to improve the environmental stability and PLQY, however, realizing core-shell structured perovskite NCs with good dispersion and multiple perovskites encapsulated within the shell material remains challenging.
View Article and Find Full Text PDFThe modulation of microstructures in conjugated polymers represents a viable strategy for enhancing photocatalytic efficiency, albeit hampered by complex processing techniques. Here, we present an uncomplicated, template-free method to synthesize polymeric photocatalysts, namely BCN(x)@PPy, featuring a hollow nanotube-nanocluster core-shell superstructure. This configuration is realized through intramolecular covalent crosslinking and synergistic intermolecular donor-acceptor (D-A) interactions between phenylene pyrene (PPy, D) nanotubes and poly([1,1'-biphenyl]-3-carbonitrile) (PBCN, A) nanoclusters.
View Article and Find Full Text PDFIn this study, a novel green fluorescent probe material, nitrogen-doped carbon quantum dots (N-CQDs), was prepared by a one-step hydrothermal synthesis method using walnut green skin as a carbon source and acetamide-glycolic acid deep eutectic solvent (AGADES) as a modifier. By covalent coupling, the amide chromophore in AGADES is designed to cover the surface of walnut green skin carbon quantum dots (W-CQDs), forming a fluorescence energy resonance effect and improving the fluorescence performance of the carbon quantum dots. The prepared N-CQDs have a uniform particle size distribution, and the fluorescence quantum efficiency has increased from 12.
View Article and Find Full Text PDFSince carbon dots (CDs) with good water solubility are preferred by researchers and biological applications, a hydrothermal method was used to synthesize green fluorescent CDs with an excitation-independent peak at 526 nm using deionized water as the solvent and neutral red as the carbon source. To achieve spectral modulation, the pH of the solvent was adjusted with KOH to obtain orange CDs (O-CDs) in an alkaline environment, with the emission peak red-shifted to 630 nm. The water-soluble CDs were prepared for multidimension sensing as Fe sensing (on/off).
View Article and Find Full Text PDFDeveloping visible to near-infrared light-absorbing conjugated polymer photocatalysts is crucial for enhancing solar energy utilization efficiency, as most conjugated organic polymers only absorb light in the visible range. In this work, we firstly developed a novel thiophene S,S-dioxide (TDO) monomer with the stronger electron-withdrawing character, and then prepared a series of donor-acceptor-donor-acceptor-type (D-A-D-A-type) conjugated terpolymers (THTDB-1-THTDB-5) by statistically adjusting the molar ratio of two sulfone-based acceptor monomers, dibenzothiophene-S,S-dioxide (BTDO, A) and TDO (A). These terpolymers demonstrate a gradually expanding absorption range from visible light to the second near-infrared (Vis-to-NIR-II) region with the gradual increase of the TDO contents in the polymer skeleton, showcasing excellent absorption properties and efficient light-capturing capabilities.
View Article and Find Full Text PDFAt present, the fast distinction of different metal ions in pure water media is not only a great challenge, but also drives the protection of water quality in environmental water bodies. In this paper, a novel ionic liquid fluorescent probe Glycolic Acid-L-Arginine (GA-L-Arg) was rationally created and designed through an in-depth study of ionic liquids. It is also used as an innovative multi-ion fluorescent probe for colorimetric detection and separate identification of Fe and Co in aqueous solutions of various metal ions.
View Article and Find Full Text PDFA new type of green carbon quantum dots (ILB-CQDs) was prepared by hydrothermal method using ionic liquid as a modifier and grape skin as carbon source, and was obtained from hydrogen-bonded lattice structure ionic liquid preparation, which makes the CQDs in a ring-like stable structure with a stability period of more than 90 day. There is also the catalytic effect of the ionic liquid on cellulose, which makes the prepared CQDs show good advantages, such as uniform particle size, high quantum yield (26.7%), and very good fluorescence performance.
View Article and Find Full Text PDFInt J Implant Dent
February 2020
Background: Implantology or implant dentistry is growing fast during last four decades. Facing the growing demand of implant treatment, there are extreme challenges to clinicians and researchers. First is peri-implantitis with remarkable prevalence.
View Article and Find Full Text PDFBackground: It has been suggested that dementia is caused by neuronal damage due to chronic inflammation from peripheral sources such as the oral cavity in periodontal disease.
Objective: The aim of our review was to assess the risk of dementia or cognitive impairment associated with chronic periodontitis and multiple tooth loss.
Materials And Methods: An extensive search of electronic databases of articles on the relation between periodontitis, tooth loss and dementia published on or before April 2016 was conducted.
Ying Yong Sheng Tai Xue Bao
February 2014
Based on fieldwork on a plot of 60 m x 60 m in the Changbai Mountain area of Northeast China in August 2012, the spatial distribution pattern and heterogeneity of natural regeneration in the spruce-fir mixed broadleaf-conifer forest were analyzed using semi-variograms, fractal dimensions and Kriging interpolation methods. The results showed that Abies nephrolepis and Acer mono were the most common regeneration species, accounting for 87.4% of the total.
View Article and Find Full Text PDFEphrin ligands interact with Eph receptors to regulate a wide variety of biological and pathological processes. Recent studies have identified several downstream pathways that mediate the functions of these receptors. Activation of the receptors by ephrin binding results in the phosphorylation of the receptor tyrosine residues.
View Article and Find Full Text PDFThe Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) binds selectively to buccal epithelial cells (BECs) of human and Old World primates by means of the outer-membrane autotransporter protein Aae. We speculated that the exposed N-terminal portion of the passenger domain of Aae would mediate binding to BECs. By using a series of plasmids that express full-length or truncated Aae proteins in Escherichia coli, we found that the BEC-binding domain of Aae was located in the N-terminal surface-exposed region of the protein, specifically in the region spanning amino acids 201-284 just upstream of the repeat region within the passenger domain.
View Article and Find Full Text PDFBackground: Lipopolysaccharide (LPS) is a cell wall component of Gram-negative bacteria with proved role in pathogenesis of sepsis. Brain injury was observed with both patients dead from sepsis and animal septic models. However, in vitro administration of LPS has not shown obvious cell damage to astrocytes and other relative cell lines while it does cause endothelial cell death in vitro.
View Article and Find Full Text PDFBackground: Rapid progress in the field of gene expression-based molecular network integration has generated strong demand on enhancing the sensitivity and data accuracy of experimental systems. To meet the need, a high-throughput gene profiling system of high specificity and sensitivity has been developed.
Results: By using specially designed primers, the new system amplifies sequences in neighboring exons separated by big introns so that mRNA sequences may be effectively discriminated from other highly related sequences including their genes, unprocessed transcripts, pseudogenes and pseudogene transcripts.
Hypocellular myelodysplastic syndrome (MDS) represents only a small portion of MDS, of which, the clinical significance has not been well-defined. By using currently accepted age-adjusted criteria to define hypocellularity as <30% in patients <70 years old, and <20% in >70 years old, we identified 163 (15.5%) hypocelluar MDS from 1049 consecutive adult MDS patients over an 11-year period (1995-2006).
View Article and Find Full Text PDFPrevious work showed that the Aggregatibacter actinomycetemcomitans adhesin Aae demonstrated species specificity and tissue tropism to buccal epithelial cells (BECs) derived from humans and Old World primates, but a second, lower-affinity adhesin was noted. This study was designed to determine if Omp100 (also known as ApiA), a surface-expressed A. actinomycetemcomitans adhesin, is that second adhesin and if so to investigate its tissue tropism and species specificity.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2004
Fluid-free alveolar space is critical for normal gas exchange. Influenza virus alters fluid transport across respiratory epithelia producing rhinorrhea, middle ear effusions, and alveolar flooding. However, the mechanism of fluid retention remains unclear.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2002
Cryptdins are antimicrobial peptides secreted by Paneth cells located at the base of intestinal crypts. In addition to their antimicrobial function, cryptdins may also regulate salt and water secretion by intestinal epithelial cells. Recent work with short-circuit current measurements indicated that at least one cryptdin peptide, cryptdin 3, induces apical conductance(s) in Cl(-) secretory, including cystic fibrosis, epithelia.
View Article and Find Full Text PDFPhosphatidylinositol 4,5-bisphosphate (PIP(2)) is a membrane lipid found in all eukaryotic cells, which regulates many important cellular processes, including ion channel activity. In this study, we used inside-out patch clamp technique, immunoprecipitation, and Western blot analysis to investigate the effect of PIP(2) on epithelial sodium channel activity in A6 cells. A6 cells were cultured in media supplemented with 1.
View Article and Find Full Text PDF