Purpose: The impact of exosome-mediated communication between glioblastoma and microglia on the formation of an immunosuppressive microenvironment remains to be explored. Tumor-associated macrophages are more likely to adopt an M2-like phenotype within the immunosuppressive environment. Here, we investigate the molecular mechanisms by which glioblastoma-derived exosomes promote microglial M2 polarization through RAC1.
View Article and Find Full Text PDFIschemic stroke is the major type of stroke and one of the main causes of morbidity, mortality, and long-term disability worldwide. Microglia play a complex and crucial role in stroke. They are the primary immune cells in the brain and can rapidly respond to the pathological changes caused by stroke.
View Article and Find Full Text PDFMerkel cell carcinoma (MCC) is a rare, invasive cutaneous neuroendocrine carcinoma that is more commonly seen in older people. It has characteristics of a high metastasis rate, high recurrence rate, and low survival rate. The clinical features of MCC are not obvious, making it easy to confuse with other malignant skin tumors.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2025
Background: Mechanisms driving the development of type A aortic dissection (TAD) are currently poorly understood, and animal models of spontaneous TAD are limited. In the present study, we developed a novel mouse TAD model and evaluated the role of GSDMD (gasdermin D) in TAD development.
Methods: TADs were created by treating the ascending aorta of adult C57BL/6J mice with Act E (active elastase) and β-aminopropionitrile.
Aesthetic Plast Surg
February 2025
Background: Polyacrylamide hydrogel (PAHG) is a new biomaterial that emerged in the last century and has been widely used in human filler procedures, such as injectable breast augmentation and facial contour improvement. However, as the implantation time of the material increases, various complications have been reported, which reflects that the safety of this material has not been adequately studied. Therefore, a more in-depth experimental analysis becomes particularly important.
View Article and Find Full Text PDFMyocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation.
View Article and Find Full Text PDFIschemic stroke can cause damage to neurons, resulting in neurological dysfunction. The main treatments in the acute phase include intravenous thrombolysis, endovascular stent-assisted vascular thrombectomy and antiplatelet therapy. Due to the limitations of the time window and the risk of early intracranial hemorrhage, finding active treatment plans is crucial for improving therapy.
View Article and Find Full Text PDFRecently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.
View Article and Find Full Text PDFIschemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent.
View Article and Find Full Text PDFBackground: Microglia/macrophages, as pivotal immune cells in the central nervous system (CNS), play a critical role in neuroinflammation associated with ischemic brain injury. Targeting their activation through pharmacological interventions represents a promising strategy to alleviate neurological deficits, thereby harboring significant implications for the prevention and treatment of ischemic stroke. Ligusticum cycloprolactam (LIGc), a novel monomeric derivative of traditional Chinese medicine, has shown potential as a therapeutic agent; however, its specific role in cerebral ischemic injury remains unclear.
View Article and Find Full Text PDFPurpose: Discuss the selection of imaging parameters in dual-energy CT enterography (DECTE) assessment for patients with Crohn's disease (CD) at different activity levels.
Method: This study analyzed data from 55 CD patients who had DECTE and endoscopy from 2020 to 2022. Patients were divided into moderate-severe (Crohn's Disease Endoscopic Index of Severity (CDEIS) ≥ 10) and remission-mild (CDEIS < 10) groups.
Secondary neurological impairment mediated by neuroinflammation is recognized as a crucial pathological factor in central nervous system (CNS) diseases. Currently, there exists a lack of specific therapies targeting neuroinflammation. Given that microglia constitute the primary immune cells involved in the neuroinflammatory response, a thorough comprehension of their role in CNS diseases is imperative for the development of efficacious treatments.
View Article and Find Full Text PDFThe cascade of correlated topological quantum states in the newly discovered vanadium-based kagome superconductors, AVSb (A = K, Rb, and Cs), with a Z topological band structure has sparked immense interest. Here, we report the discovery of superconductivity and electronic nematic order in high-quality single-crystals of a new titanium-based kagome metal, CsTiBi, that preserves the translation symmetry, in stark contrast to the charge density wave superconductor AVSb. Transport and magnetic susceptibility measurements show superconductivity with an onset superconducting transition temperature T of approximately 4.
View Article and Find Full Text PDFBackground: This study evaluated the clinical data on ophthalmic follow-up and treatment efficacy of hereditary vitreoretinal amyloidosis kindred due to transthyretin Gly83Arg variant over a 15-year follow-up period.
Methods: The clinical data of patients with hereditary ATTRG83R amyloidosis from 2006 to 2021 were analysed retrospectively. Sanger sequencing of the transthyretin gene, detailed medical history, pedigree charting, and systemic and ophthalmic examinations were carried out in all patients.
Animal Model Exp Med
March 2025
Background: Scientific animal models are indispensable for studying trauma repair. This work aimed at establishing a more scientific rat trauma model by studying different rat trauma models caused by different trauma numbers, locations, and trauma attachment tension unloaders and rat age.
Methods: A four-trauma self-upper, lower, left and right control model; a two-trauma self-trauma bare and ring control model; and a young and old rat trauma model were created to evaluate the condition of these traumas.
Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration, and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized pro-resolving lipid mediators, via G-protein-coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls.
View Article and Find Full Text PDFBackground: Thoracic aortic dissection (TAD) is a silent killer. Approximately two-thirds of the cases occur in the ascending aorta (i.e.
View Article and Find Full Text PDFThe pathogenesis of abdominal aortic aneurysm (AAA) formation involves vascular inflammation, thrombosis formation and programmed cell death leading to aortic remodeling. Recent studies have suggested that ferroptosis, an excessive iron-mediated cell death, can regulate cardiovascular diseases, including AAAs. However, the role of ferroptosis in immune cells, like macrophages, and ferroptosis-related genes in AAA formation remains to be deciphered.
View Article and Find Full Text PDFTraditional magnetic sub-Kelvin cooling relies on the nearly free local moments in hydrate paramagnetic salts, whose utility is hampered by the dilute magnetic ions and low thermal conductivity. Here we propose to use instead fractional excitations inherent to quantum spin liquids (QSLs) as an alternative, which are sensitive to external fields and can induce a very distinctive magnetocaloric effect. With state-of-the-art tensor-network approach, we compute low-temperature properties of Kitaev honeycomb model.
View Article and Find Full Text PDFAbdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized proresolving lipid mediators, via G-protein coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls.
View Article and Find Full Text PDFCentral nervous system (CNS) diseases are one of the diseases that threaten human health. The delivery of drugs targeting the CNS has always been a significant challenge; the blood-brain barrier (BBB) is the main obstacle that must be overcome. The rise of bone marrow mesenchymal stem cell (BMSC) therapy has brought hope for the treatment of CNS diseases.
View Article and Find Full Text PDFThe recently discovered nickelate superconductor La_{3}Ni_{2}O_{7} has a high transition temperature near 80 K under pressure, providing an additional avenue for exploring unconventional superconductivity. Here, with state-of-the-art tensor-network methods, we study a bilayer t-J-J_{⊥} model for La_{3}Ni_{2}O_{7} and find a robust s-wave superconductive (SC) order mediated by interlayer magnetic couplings. Large-scale density matrix renormalization group calculations find algebraic pairing correlations with Luttinger parameter K_{SC}≲1.
View Article and Find Full Text PDFGliomas, the most common malignant brain tumor, present a grim prognosis despite available treatments such as surgical resection, temozolomide (TMZ) therapy, and radiation therapy. This is due to their aggressive growth, high level of immunosuppression, and the blood-brain barrier (BBB), which obstruct the effective exchange of therapeutic drugs. Gliomas can significantly affect differentiation and function of immune cells by releasing extracellular vesicles (EVs), resulting in a systemic immunosuppressive state and a highly immunosuppressive microenvironment.
View Article and Find Full Text PDFSupersolid, an exotic quantum state of matter that consists of particles forming an incompressible solid structure while simultaneously showing superfluidity of zero viscosity, is one of the long-standing pursuits in fundamental research. Although the initial report of He supersolid turned out to be an artefact, this intriguing quantum matter has inspired enthusiastic investigations into ultracold quantum gases. Nevertheless, the realization of supersolidity in condensed matter remains elusive.
View Article and Find Full Text PDFThe finite Berry curvature in topological materials can induce many subtle phenomena, such as the anomalous Hall effect (AHE), spin Hall effect (SHE), anomalous Nernst effect (ANE), non-linear Hall effect (NLHE) and bulk photovoltaic effects. To explore these novel physics as well as their connection and coupling, a precise and effective model should be developed. Here, we propose such a versatile model-a 3D triangular lattice with alternating hopping parameters, which can yield various topological phases, including kagome bands, triply degenerate fermions, double Weyl semimetals and so on.
View Article and Find Full Text PDF