Drug uptake by polymer was modeled using a molecular dynamics (MD) simulation technique. Three drugs--doxorubicin (water soluble), silymarin (sparingly water soluble) and gliclazide (water insoluble)--and six polymers with varied functional groups--alginic acid, sodium alginate, chitosan, Gantrez AN119 (methyl-vinyl-ether-co-malic acid based), Eudragit L100 and Eudragit RSPO (both acrylic acid based)--were selected for the study. The structures were modeled and minimized using molecular mechanics force field (MM+).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2009
Nanoparticles have widely been studied in drug delivery research for targeting and controlled release. The aim of this article is application of nanoparticles as an inhalable agent for treatment of lung cancer. To deposit effectively deep the particles in the lungs, the PLGA nanoparticles loaded with the anticancer drug 6-{[2-(dimethylamino)ethyl]amino}-3-hydroxyl-7H-indeno[2,1-c]quinolin-7-one dihydrochloride (TAS-103) were prepared in the form of nanocomposite particles.
View Article and Find Full Text PDFThe aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated.
View Article and Find Full Text PDF