Publications by authors named "Ganesh Thakur"

The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators.

View Article and Find Full Text PDF

The direct blockade of CB cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB. We recently reported that GAT358, a CB-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB-allosteric mechanism of action.

View Article and Find Full Text PDF

There is an urgent need for nonopioid treatments for chronic and neuropathic pain to provide effective alternatives amid the escalating opioid crisis. This study introduces novel compounds targeting the α9 nicotinic acetylcholine receptor (nAChR) subunit, which is crucial for pain regulation, inflammation, and inner ear functions. Specifically, it identifies novel substituted carbamoyl/amido/heteroaryl dialkylpiperazinium iodides as potent agonists selective for human α9 and α9α10 over α7 nAChRs, particularly compounds , , and .

View Article and Find Full Text PDF

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear.

View Article and Find Full Text PDF

Several lines of evidence have indicated that nicotinic acetylcholine receptors (nAChR) that contain α9 subunits, probably in combination with α10 subunits, may be valuable targets for the management of pain associated with inflammatory diseases through a cholinergic anti-inflammatory system (CAS), which has also been associated with α7 nAChR. Both α7- and α9-containing neuronal nAChR can be pharmacologically distinguished from the high-affinity nicotinic receptors of the brain by their sensitivity to α-bungarotoxin, but in other ways, they have quite distinct pharmacological profiles. The early association of α7 with CAS led to the development of numerous new ligands, variously characterized as α7 agonists, partial agonists, or silent agonists that desensitized α7 receptors without activation.

View Article and Find Full Text PDF

The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators.

View Article and Find Full Text PDF

Unlabelled: The direct blockade of CB cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB . We recently reported that GAT358, a CB -NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB -allosteric mechanism of action.

View Article and Find Full Text PDF

This work is devoted the problem of a security-guaranteed filter design for a class of discrete-time Markov jump systems that are vulnerable to stochastic deception attacks and have random sensor saturation. Deception attacks, in particular, are taken into account in the filter when the attacker attempts to modify the broadcast signal in communication networks by inserting some misleading information data into the assessment output. The Bernoulli distribution is satisfied by two sets of introduced stochastic variables.

View Article and Find Full Text PDF

Background: Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception.

View Article and Find Full Text PDF

In this research, a non-fragile synchronization of bidirectional association memory (BAM) delayed neural networks is taken into consideration. The controller gain fluctuation seems in a very random manner, that obeys sure Bernoulli distributed noise sequences. Delay dependent criteria are derived to confirm the asymptotic stability of the BAM delayed neural networks.

View Article and Find Full Text PDF

Supraphysiological concentrations of oxygen (hyperoxia) can compromise host defense and increase susceptibility to bacterial and viral infections, causing ventilator-associated pneumonia (VAP). Compromised host defense and inflammatory lung injury are mediated, in part, by high extracellular concentrations of HMGB1, which can be decreased by GTS-21, a partial agonist of α7 nicotinic acetylcholine receptor (α7nAChR). Here, we report that a novel α7nAChR agonistic positive allosteric modulator (ago-PAM), GAT107, at 3.

View Article and Find Full Text PDF
Article Synopsis
  • Positive allosteric modulation of the type 1 cannabinoid receptor (CB1R) shows promise for treating neurological and immune disorders.
  • The study focused on separating enantiomers of two potent CB1R ago-PAMs, GAT591 and GAT593, to assess their biochemical activity at CB1R.
  • Distinct binding behaviors and activities were observed between the enantiomers, indicating that they may operate through different mechanisms, which highlights their potential in treating conditions like pain, epilepsy, glaucoma, and Huntington's disease.
View Article and Find Full Text PDF

A series of dipicolyl amine pyrimidines (DPPs) were previously identified as potential 7 agonists by means of a calcium influx assay in the presence of the positive allosteric modulator (PAM) 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596). The compounds lack the quaternary or strongly basic nitrogens of typical nicotinic agonists. Although differing in structure from typical nicotinic agonists, based on crystallographic data with the acetylcholine binding protein, they appeared to engage the site shared by such typical orthosteric agonists.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are researching a new way to block the effects of drugs like opioids by targeting a brain receptor called CB without causing negative side effects.*
  • They tested a compound named GAT358 and found it could stop the rewarding effects of morphine without making the rats feel high or sick.*
  • GAT358 could help people by reducing cravings for drugs like oxycodone, making it a promising option for treating addiction.*
View Article and Find Full Text PDF

G protein-gated inwardly rectifying K (GIRK) channels form highly active heterotetramers in the body, such as in neurons (GIRK1/GIRK2 or GIRK1/2) and heart (GIRK1/GIRK4 or GIRK1/4). Based on three-dimensional atomic resolution structures for GIRK2 homotetramers, we built heterotetrameric GIRK1/2 and GIRK1/4 models in a lipid bilayer environment. By employing a urea-based activator ML297 and its molecular switch, the inhibitor GAT1587, we captured channel gating transitions and K ion permeation in sub-microsecond molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Glutamate signalling through the N-methyl-d-aspartate receptor (NMDAR) activates the enzyme neuronal nitric oxide synthase (nNOS) to produce the signalling molecule nitric oxide (NO). We hypothesized that disruption of the protein-protein interaction between nNOS and the scaffolding protein postsynaptic density 95 kDa (PSD95) would block NMDAR-dependent NO signalling and represent a viable therapeutic route to decrease opioid reward and relapse-like behaviour without the unwanted side effects of NMDAR antagonists. We used a conditioned place preference (CPP) paradigm to evaluate the impact of two small-molecule PSD95-nNOS inhibitors, IC87201 and ZL006, on the rewarding effects of morphine.

View Article and Find Full Text PDF

Childhood absence epilepsy (CAE) is a non-convulsive seizure disorder primarily in children characterized by absence seizures. Absence seizures consist of 2.5-5 Hz spike-and-wave discharges (SWDs) detectable using electroencephalography (EEG).

View Article and Find Full Text PDF
Article Synopsis
  • Dravet syndrome is a severe childhood epilepsy characterized by various treatment-resistant seizures, linked to a potential deficiency in the endocannabinoid system which regulates neuron activity.
  • Research on a mouse model (Scn1a mice) showed that those with a genetic background prone to seizures had lower levels of cannabinoid receptors, supporting the idea that endocannabinoid deficiencies may contribute to increased seizure susceptibility.
  • Experiments with compounds that enhance endocannabinoid activity displayed anticonvulsant effects against certain seizures, but one treatment unexpectedly increased spontaneous seizure frequency, highlighting the complexity of developing effective therapies for Dravet syndrome.
View Article and Find Full Text PDF

The transient receptor potential (TRP) superfamily of cation channels, of which the TRP vanilloid type 1 (TRPV1) receptor plays a critical role in inflammatory and neuropathic pain, is expressed on nociceptors and spinal cord dorsal horn neurons. TRPV1 is also expressed on spinal astrocytes and dorsal root ganglia (DRG) satellite cells. Agonists of the cannabinoid type 2 receptor (CBR) suppress allodynia, with some that can bind TRPV1.

View Article and Find Full Text PDF

Allosteric modulators of cannabinoid 1 receptor (CB1R) show translational promise over orthosteric ligands due to their potential to elicit therapeutic benefit without cannabimimetic side effects. The prototypic 2-phenylindole CB1R allosteric modulator, GAT211 (1), demonstrates preclinical efficacy in various disease models. The limited systematic structure-activity relationship (SAR) data at the C2 position of the indole ring within GAT211 invites the opportunity for further modifications to improve GAT211's pharmacological profile while serving to amplify and variegate this library of therapeutically attractive agents.

View Article and Find Full Text PDF

NS6740 is an α nicotinic acetylcholine receptor-selective partial agonist with low efficacy for channel activation, capable of promoting the stable conversion of the receptors to nonconducting (desensitized) states that can be reactivated with the application of positive allosteric modulators (PAMs). In spite of its low efficacy for channel activation, NS6740 is an effective activator of the cholinergic anti-inflammatory pathway. We observed that the concentration-response relationships for channel activation, both when applied alone and when co-applied with the PAM PNU-120596 are inverted-U shaped with inhibitory/desensitizing activities dominant at high concentrations.

View Article and Find Full Text PDF

Background: The α7 nicotinic acetylcholine receptor (α7 nAChR) negatively regulates the synthesis and release of pro-inflammatory cytokines by immune cells. Our previous studies showed that in encephalitogenic T cells, α7 nAChR expression is upregulated and that activation of the cholinergic system can attenuate experimental autoimmune encephalomyelitis (EAE). GAT107 is an allosteric agonist and positive allosteric modulator (ago-PAM) of α7 nAChR that can produce persistent activation of this receptor.

View Article and Find Full Text PDF

The low sensitivity (α4)3(β2)2 (LS) and high sensitivity (α4)2(β2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4β2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4β2 nAChRs, and CMPI, a PAM selective for the LS nAChR.

View Article and Find Full Text PDF

Childhood Absence Epilepsy (CAE) accounts for approximately 10% of all pediatric epilepsies. Current treatments for CAE are ineffective in approximately 1/3 of patients and can be associated with severe side effects such as hepatotoxicity. Certain cannabinoids, such as cannabidiol (CBD), have shown promise in the treatment of pediatric epilepsies.

View Article and Find Full Text PDF

We apply the magic methyl effect to improve the potency/efficacy of GAT211, the prototypic 2-phenylindole-based cannabinoid type-1 receptor (CB1R) agonist-positive allosteric modulator (ago-PAM). Introducing a methyl group at the α-position of nitro group generated two diastereomers, the greater potency and efficacy of , (±)- vs , (±)- constitutes the first demonstration of diastereoselective CB1R-allosteric modulator interaction. Of the (±)- enantiomers, (-)-(,)- evidenced improved potency over GAT211 as a CB1R ago-PAM, whereas (+)-(,)- was a CB1R allosteric agonist biased toward G protein- vs β-arrestin1/2-dependent signaling.

View Article and Find Full Text PDF