Task scheduling problem (TSP) is huge challenge in cloud computing paradigm as number of tasks comes to cloud application platform vary from time to time and all the tasks consists of variable length, runtime capacities. All these tasks may generated from various heterogeneous resources which comes onto cloud console directly effects the performance of cloud paradigm with increase in makespan, energy consumption, resource costs. Traditional task scheduling algorithms cannot handle these type of complex workloads in cloud paradigm.
View Article and Find Full Text PDFCloud Computing model provides on demand delivery of seamless services to customers around the world yet single point of failures occurs in cloud model due to improper assignment of tasks to precise virtual machines which leads to increase in rate of failures which effects SLA based trust parameters (Availability, success rate, turnaround efficiency) upon which impacts trust on cloud provider. In this paper, we proposed a task scheduling algorithm which captures priorities of all tasks, virtual resources from task manager which comes onto cloud application console are fed to task scheduler which takes scheduling decisions based on hybridization of both Harris hawk optimization and ML based reinforcement algorithms to enhance the scheduling process. Task scheduling in this research performed in two phases i.
View Article and Find Full Text PDFCloud computing is a distributed computing model which renders services for cloud users around the world. These services need to be rendered to customers with high availability and fault tolerance, but there are still chances of having single-point failures in the cloud paradigm, and one challenge to cloud providers is effectively scheduling tasks to avoid failures and acquire the trust of their cloud services by users. This research proposes a fault-tolerant trust-based task scheduling algorithm in which we carefully schedule tasks within precise virtual machines by calculating priorities for tasks and VMs.
View Article and Find Full Text PDFEffective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The ineffective scheduling of resources while not considering the suitability of tasks will affect the quality of service of the cloud provider, and much more energy will be consumed in the running of tasks by the inefficient provisioning of resources, thereby taking an enormous amount of time to process tasks, which affects the makespan. Minimizing SLA violations is an important aspect that needs to be addressed as it impacts the makespans, energy consumption, and also the quality of service in a cloud environment.
View Article and Find Full Text PDFSensors (Basel)
February 2023
Cloud-fog computing is a wide range of service environments created to provide quick, flexible services to customers, and the phenomenal growth of the Internet of Things (IoT) has produced an immense amount of data on a daily basis. To complete tasks and meet service-level agreement (SLA) commitments, the provider assigns appropriate resources and employs scheduling techniques to efficiently manage the execution of received IoT tasks in fog or cloud systems. The effectiveness of cloud services is directly impacted by some other important criteria, such as energy usage and cost, which are not taken into account by many of the existing methodologies.
View Article and Find Full Text PDFTask scheduling in the cloud computing paradigm poses a challenge for researchers as the workloads that come onto cloud platforms are dynamic and heterogeneous. Therefore, scheduling these heterogeneous tasks to the appropriate virtual resources is a huge challenge. The inappropriate assignment of tasks to virtual resources leads to the degradation of the quality of services and thereby leads to a violation of the SLA metrics, ultimately leading to the degradation of trust in the cloud provider by the cloud user.
View Article and Find Full Text PDF