To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
August 2016
This paper presents the development of an intelligent dynamic energy management system (I-DEMS) for a smart microgrid. An evolutionary adaptive dynamic programming and reinforcement learning framework is introduced for evolving the I-DEMS online. The I-DEMS is an optimal or near-optimal DEMS capable of performing grid-connected and islanded microgrid operations.
View Article and Find Full Text PDFNeural networks for implementing large networked systems such as smart electric power grids consist of multiple inputs and outputs. Many outputs lead to a greater number of parameters to be adapted. Each additional variable increases the dimensionality of the problem and hence learning becomes a challenge.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2012
Cellular neural networks (CNNs), as previously described, consist of identical units called cells that are connected to their adjacent neighbors. These cells interact with each other in order to fulfill a common goal. The current methods involved in learning of CNNs are usually centralized (cells are trained in one location) and synchronous (all cells are trained simultaneously either sequentially or in parallel depending on the available hardware/software platform).
View Article and Find Full Text PDFA novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly.
View Article and Find Full Text PDFTraining a single simultaneous recurrent neural network (SRN) to learn all outputs of a multiple-input-multiple-output (MIMO) system is a difficult problem. A new training algorithm developed from combined concepts of swarm intelligence and quantum principles is presented. The training algorithm is called particle swarm optimization with quantum infusion (PSO-QI).
View Article and Find Full Text PDFThe present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society.
View Article and Find Full Text PDFThe application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
August 2008
An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC.
View Article and Find Full Text PDF