Unlabelled: Metastatic breast cancer is an intractable disease that responds poorly to immunotherapy. We show that p38MAPKα inhibition (p38i) limits tumor growth by reprogramming the metastatic tumor microenvironment in a CD4+ T cell-, IFNγ-, and macrophage-dependent manner. To identify targets that further increased p38i efficacy, we utilized a stromal labeling approach and single-cell RNA sequencing.
View Article and Find Full Text PDFBackground Information: Various types of stress initially induce a state of cardiac hypertrophy (CH) in the heart. But, persistent escalation of cardiac stress leads to progression from an adaptive physiological to a maladaptive pathological state. So, elucidating molecular mechanisms that can attenuate CH is imperative in developing cardiac therapies.
View Article and Find Full Text PDFPolyphenols are naturally occurring organic compounds with varying structures represented by four major groups: flavonoids, phenolic acids, lignans and stilbenes. Several studies suggested that these secondary metabolites have health benefits due to its anti-tumorigenic effect. Therefore, substantial effort has been put forward to isolate and characterize these natural compounds and synthesize analogues that may serve as potential anti-cancer therapeutics.
View Article and Find Full Text PDFCardiac hypertrophy is an adaptive response to stress, in order to maintain proper cardiac function. However, sustained stress leads to pathological hypertrophy accompanied by maladaptive responses and ultimately heart failure. At the cellular level, cardiomyocyte hypertrophy is characterized by an increase in myocyte size, reactivation of the fetal gene markers, disassembly of the sarcomere and transcriptional remodelling which are regulated by heart-specific transcription factors like MEF2, GATA4 and immediate early genes like c-jun and c-fos.
View Article and Find Full Text PDFIn recent years there has been an upsurge in research focusing on reprogramming cancer cells through understanding of their metabolic signatures. Alterations in mitochondrial bioenergetics and impaired mitochondrial function may serve as effective targeting strategies especially in triple-negative breast cancers (TNBCs) where hormone receptors and endocrine therapy are absent. Glucose starvation (GS) of MDA-MB-231 and MCF-7 breast cancer cells showed decrease in mitochondrial Oxygen Consumption Rate (OCR), which was rescuable to control level through addition of exogenous antioxidant N-Acetyl Cysteine (NAC).
View Article and Find Full Text PDF