Publications by authors named "Ganesan Rajasekaran"

The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to rapid drug resistance development to current antibiotic therapeutics. The use of disulfide-rich head-to-tail cyclized polypeptides as molecular frameworks for designing a new type of peptide antibiotics is gaining increasing attention among the scientific community and the pharmaceutical industry. The use of macrocyclic peptides, further constrained by the presence of several disulfide bonds, makes these peptide frameworks remarkably more stable to thermal, biological, and chemical degradation showing better activities when compared to their linear analogs.

View Article and Find Full Text PDF

Classical approaches for the backbone cyclization of polypeptides require conditions that may compromise the chirality of the C-terminal residue during the activation step of the cyclization reaction. Here, we describe an efficient epimerization-free approach for the Fmoc-based synthesis of murepavadin using intramolecular native chemical ligation in combination with a concomitant desulfurization reaction. Using this approach, bioactive murepavadin was produced in a good yield in two steps.

View Article and Find Full Text PDF

The search for novel antimicrobial agents to combat microbial pathogens is intensifying in response to the rapid development of drug resistance to current antibiotic therapeutics. Respiratory failure and septicemia are the leading causes of mortality among hospitalized patients. Here, the development of a novel engineered cyclotide with effective broad-spectrum antibacterial activity against several ESKAPE bacterial strains and clinical isolates is reported.

View Article and Find Full Text PDF

Fowlicidin-1 (Fowl-1), a cathelicidin expressed in chicken intestine, is known to have both antimicrobial and anti-inflammatory properties. However, its pharmaceutical development has been ultimately compromised by its high host cytotoxicity. In this study, a series of N- and C-terminal-truncated 19-meric Fowl-1 peptides were synthesized.

View Article and Find Full Text PDF

The emergence of multi-drug resistant bacteria forces the therapeutic world into a position, where the development of new and alternative kind of antibiotics is highly important. Herein, we report the development of triazine-based amphiphilic small molecular antibacterial agents as mimics of lysine- and arginine-based cationic peptide antibiotics (CPAs). These compounds were screened against a panel of both Gram-positive and Gram-negative bacterial strains.

View Article and Find Full Text PDF

Here we describe the three-dimensional structure and antimicrobial mechanism of mBjAMP1, an antimicrobial peptide (AMP) isolated from Branchiostoma japonicum. The structure of mBjAMP1 was determined by 2D solution NMR spectroscopy and revealed a novel α-hairpinin-like scaffold stabilized by an intramolecular disulfide bond. mBjAMP1 showed effective growth inhibition and bactericidal activities against pathogenic bacteria but was not cytotoxic to mammalian cells.

View Article and Find Full Text PDF

CXCL14 is a CXC chemokine family that exhibits antimicrobial activity and contains an amphipathic cationic α-helical region in the C-terminus, a characteristic structure of antimicrobial peptides (AMPs). In this study, we designed three analogs of CXCL14 (named CXCL14-C17) corresponding to the C-terminal α-helix of CXCL14, which displayed potential antimicrobial activity against a wide variety of gram-negative and gram-positive bacteria with minimum inhibitory concentrations of 4-16 μM without mammalian cell toxicity. Furthermore, two CXCL14-C17 analogs (CXCL14-C17-a1 and CXCL14-C17-a3) with improved cell selectivity were engineered by introducing Lys, Arg, or Trp in CXCL14-C17.

View Article and Find Full Text PDF

KR-12-a5 is a 12-meric α-helical antimicrobial peptide (AMP) with dual antimicrobial and anti-inflammatory activities designed from human cathelicidin LL-37. We designed and synthesized a series of d-amino acid-substituted analogs of KR-12-a5 with the aim of developing novel α-helical AMPs that possess higher cell selectivity than KR-12-a5, while maintaining the anti-inflammatory activity. d-amino acid incorporation into KR-12-a5 induced a significant improvement in the cell selectivity by 2.

View Article and Find Full Text PDF

Defensin peptides are essential for innate immunity in humans and other living systems, as they provide protection against infectious pathogens and regulate the immune response. Here, we report the solution structure of rattusin (RTSN), an α-defensin-related peptide, which revealed a novel C-symmetric disulfide-linked dimeric structure. RTSN was synthesized by solid-phase peptide synthesis (SPPS) and refolded by air oxidation in vitro.

View Article and Find Full Text PDF

Although the human-derived antimicrobial peptide (AMP) LL-37 has potent antimicrobial and anti-inflammatory activities, its therapeutic application is limited by its low cell selectivity and high production cost due to its large size. To overcome these problems, we tried to develop novel LL-37-derived short α-helical AMPs with improved cell selectivity and without a significant loss of anti-inflammatory activity relative to that of parental LL-37. Using amino acid substitution, we designed and synthesized a series of FK13 analogs based on the sequence of the 13-meric short FK13 peptide (residues 17-29 of LL-37) that has been identified as the region responsible for the antimicrobial activity of LL-37.

View Article and Find Full Text PDF

In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin.

View Article and Find Full Text PDF

Sheep myeloid antimicrobial peptide-29 (SMAP-29) is a cathelicidin-related antimicrobial peptide derived from sheep myeloid cells. In order to investigate the effects of L-to-D-amino acid substitution in SMAP-29 on bacterial selectivity, membrane interaction and anti-inflammatory activity, we synthesized its two D-enantiomeric peptides (SMAP-29-E1 and SMAP-29-E2 containing D-Ile and D-allo-Ile, respectively) and two diastereomeric peptides (SMAP-29-D1 and SMAP-29-D2). Additionally, in order to address the effect of L-to-D-amino acid substitution in the N-terminal helical peptide of SMAP-29 (named SMAP-18) on antimicrobial activity, we synthesized its two D-enantiomeric peptides (SMAP-18-E1 and SMAP-18-E2), which are composed of D-amino acids entirely.

View Article and Find Full Text PDF

Temporin-1Tl (TL) is a 13-residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti-inflammatory activity. To develop novel AMP with improved anti-inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin-resistant Staphylococcus aureus strains compared with TL.

View Article and Find Full Text PDF

The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting.

View Article and Find Full Text PDF