Publications by authors named "Gane Wong"

Article Synopsis
  • MarkerDB is a leading resource for molecular biomarker information that recently launched a significant update called MarkerDB 2.0.
  • This update features thousands of new biomarkers, improved search functionalities, and new tools for exploring biomarker panels, enhancing overall user experience.
  • MarkerDB continues to be a free and accessible platform, aimed at supporting a wide range of applications in clinical medicine and biomedical research.
View Article and Find Full Text PDF

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis.

View Article and Find Full Text PDF

Background: Early-stage breast cancer patients treated with chemotherapy risk the development of metabolic disease and weight gain, which can result in increased morbidity and reduced quality of life in survivorship. We aimed to analyze changes within the gastrointestinal microbiome of early-stage breast cancer patients treated with and without chemotherapy to investigate a potential relationship between dysbiosis, a systemic inflammatory response, and resultant anthropomorphic changes.

Methods: We undertook an a priori analysis of serially collected stool and plasma samples from 40 patients with early-stage breast cancer who underwent adjuvant endocrine therapy only, adjuvant chemotherapy only, or both.

View Article and Find Full Text PDF

Microtubules are cylindrical protein polymers assembled in the cytoplasm of all eukaryotic cells by polymerization of aβ tubulin dimers, which are involved in cell division, migration, signaling, and intracellular traffic. These functions make them essential in the proliferation of cancerous cells and metastases. Tubulin has been the molecular target of many anticancer drugs because of its crucial role in the cell proliferation process.

View Article and Find Full Text PDF
Article Synopsis
  • Over the past 20 years, synthetic small interfering RNAs (siRNAs) have emerged as an effective method for gene silencing, which can disrupt gene expression by either repressing transcription or promoting RNA degradation.
  • Significant investments have been made in RNA therapeutics, particularly targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) to lower LDL cholesterol levels and reduce cardiovascular disease risks.
  • Inclisiran, a GalNAc-conjugated siRNA that inhibits PCSK9, offers a convenient treatment option requiring administration every 3 to 6 months, showing promise over traditional monoclonal antibodies for managing lipid disorders.
View Article and Find Full Text PDF

A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process.

View Article and Find Full Text PDF

The Pedinophyceae (Viridiplantae) comprise a class of small uniflagellate algae with a pivotal position in the phylogeny of the Chlorophyta as the sister group of the 'core chlorophytes'. We present a chromosome-level genome assembly of the freshwater type species of the class, Pedinomonas minor. We sequenced the genome using Pacbio, Illumina and Hi-C technologies, performed comparative analyses of genome and gene family evolution, and analyzed the transcriptome under various abiotic stresses.

View Article and Find Full Text PDF

As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood.

View Article and Find Full Text PDF

Shotgun metagenomics studies have improved our understanding of microbial population dynamics and have revealed significant contributions of microbes to gut homeostasis. They also allow inference of the metagenome. While they link the microbiome with metabolic abnormalities associated with disease phenotypes, they do not capture microbial gene expression patterns that occur in response to the multitude of stimuli that constantly ambush the gut environment.

View Article and Find Full Text PDF

Fecal microbiota transplantation (FMT) is highly effective in recurrent infection (CDI); increasing evidence supports FMT in severe or fulminant infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions.

View Article and Find Full Text PDF

Pathological examination is the gold standard for cancer diagnosis, and breast tumor cells are often found in clusters. We report a case study on one triple-negative breast cancer (TNBC) patient, analyzing tumor development, metastasis, and prognosis with simultaneous DNA and RNA sequencing of pathologist-defined cell clusters from multiregional frozen sections. The cell clusters are isolated by laser capture microdissection (LCM) from primary tumor tissue, lymphatic vessels, and axillary lymph nodes.

View Article and Find Full Text PDF

C photosynthesis is a remarkable complex trait, elucidations of the evolutionary trajectory of C photosynthesis from its ancestral C pathway can help us better understand the generic principles of the evolution of complex traits and guide the engineering of C crops for higher yields. Here, we used the genus Flaveria that contains C, C-C, C-like and C species as a system to study the evolution of C photosynthesis. We first mapped transcript abundance, protein sequence and morphological features onto the phylogenetic tree of the genus Flaveria, and calculated the evolutionary correlation of different features; we then predicted the relative changes of ancestral nodes of those features to illustrate the major events during the evolution of C photosynthesis.

View Article and Find Full Text PDF

Cation and anion channelrhodopsins (CCRs and ACRs, respectively) primarily from two algal species, Chlamydomonas reinhardtii and Guillardia theta, have become widely used as optogenetic tools to control cell membrane potential with light. We mined algal and other protist polynucleotide sequencing projects and metagenomic samples to identify 75 channelrhodopsin homologs from four channelrhodopsin families, including one revealed in dinoflagellates in this study. We carried out electrophysiological analysis of 33 natural channelrhodopsin variants from different phylogenetic lineages and 10 metagenomic homologs in search of sequence determinants of ion selectivity, photocurrent desensitization, and spectral tuning in channelrhodopsins.

View Article and Find Full Text PDF

Detection of low abundance target DNA/RNA for clinical or research purposes is challenging because the target sequences can be hidden under a large background of human genomic or non-human metagenomic sequences. We describe a probe-based capture method to enrich for target sequences with DNA-clicked iron oxide nanoparticles. Our method was tested against commercial capture assays using streptavidin beads, on a set of probes derived from a common genotype of the hepatitis C virus.

View Article and Find Full Text PDF

Precision medicine initiatives are being launched worldwide, each with the capacity to sequence many thousands to millions of human genomes. At the strategic planning level, all are debating the extent to which these resources will be directed towards rare diseases (and cancers) versus common diseases. However, these are not mutually exclusive choices.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) are widespread in the biosphere. This issue of Cell Host & Microbe, Nelson et al., and a recent Nature paper, Moniruzzaman et al.

View Article and Find Full Text PDF

Premise: Large disjunctions in species distributions provide excellent opportunities to study processes that shape biogeographic patterns. One such disjunction is the eastern Asia-eastern North America (EA-ENA) floristic disjunction. For many genera with this disjunction, species richness is greater in EA than in ENA; this pattern has been attributed, in part, to higher rates of molecular evolution and speciation in EA.

View Article and Find Full Text PDF

Fundamental restoration ecology and community ecology theories can help us better understand the underlying mechanisms of fecal microbiota transplantation (FMT) and to better design future microbial therapeutics for recurrent Clostridioides difficile infections (rCDI) and other dysbiosis-related conditions. In this study, stool samples were collected from donors and rCDI patients one week prior to FMT (pre-FMT), as well as from patients one week following FMT (post-FMT). Using metagenomic sequencing and machine learning, our results suggested that FMT outcome is not only dependent on the ecological structure of the recipients, but also the interactions between the donor and recipient microbiomes at the taxonomical and functional levels.

View Article and Find Full Text PDF

Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma. Lesions of MF are formed by hematogenous seeding the skin with polyclonal (clonotypically diverse) neoplastic T-cells which accumulate numerous mutations and display a high degree of mutational, intratumoral heterogeneity (ITH). A characteristic but poorly studied feature of MF is epidermotropism, the tendency to infiltrate skin epithelial layer (epidermis) in addition to the vascularized dermis.

View Article and Find Full Text PDF

Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.

View Article and Find Full Text PDF

Mycosis fungoides (MF) is a slowly progressive cutaneous T-cell lymphoma (CTCL) for which there is no cure. In the early plaque stage, the disease is indolent, but development of tumors heralds an increased risk of metastasis and death. Previous research into the genomic landscape of CTCL revealed a complex pattern of >50 driver mutations implicated in more than a dozen signaling pathways.

View Article and Find Full Text PDF

Channelrhodopsins guide algal phototaxis and are widely used as optogenetic probes for control of membrane potential with light. "Bacteriorhodopsin-like" cation channelrhodopsins (BCCRs) from cryptophytes differ in primary structure from other CCRs, lacking usual residues important for their cation conductance. Instead, the sequences of BCCR match more closely those of rhodopsin proton pumps, containing residues responsible for critical proton transfer reactions.

View Article and Find Full Text PDF

Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support.

View Article and Find Full Text PDF