Publications by authors named "Gancarz A"

Article Synopsis
  • The study investigates the role of histone demethylase JMJD3 in the nucleus accumbens and its impact on heroin-seeking behavior after a period of abstinence in male rats.
  • Findings show that JMJD3 levels and phosphorylated SMAD1/5 increase following 14 days of heroin abstinence, and manipulating these pathways affects drug-seeking behaviors.
  • The research concludes that JMJD3 is involved in long-term changes linked to heroin relapse, with its effects being regulated by the bone morphogenetic protein (BMP) signaling pathway.
View Article and Find Full Text PDF

Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors.

View Article and Find Full Text PDF

Adolescence, a critical period of developmental period, is marked by neurobiological changes influenced by environmental factors. Here, we show how exposure to sucrose, which is ubiquitously available in modern diets, results in changes in behavioural response to cocaine as an adult. Rats were given daily access to either 10% sucrose or water during the adolescent period (PND28-42).

View Article and Find Full Text PDF

Rationale: An important facet of cocaine addiction is a high propensity to relapse, with increasing research investigating factors that predispose individuals toward uncontrolled drug use and relapse. A personality trait linked to drug addiction is high sensation seeking, i.e.

View Article and Find Full Text PDF

Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors.

View Article and Find Full Text PDF

Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure.

View Article and Find Full Text PDF

Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure.

View Article and Find Full Text PDF

Relapse vulnerability in substance use disorder is attributed to persistent cue-induced drug seeking that intensifies (or "incubates") during drug abstinence. Incubated cocaine seeking has been observed in both humans with cocaine use disorder and in preclinical relapse models. This persistent relapse vulnerability is mediated by neuroadaptations in brain regions involved in reward and motivation.

View Article and Find Full Text PDF

Neuroadaptations in the nucleus accumbens (NAc) underlie cue-induced cocaine craving that intensifies ("incubates") during abstinence and is believed to contribute to persistent relapse vulnerability. Changes in gene expression often govern perpetual behavioral abnormalities, but epigenetic plasticity during prolonged abstinence from drug exposure is poorly understood. We examined how E3 ubiquitin ligase TRIM3 dysregulates chromatin remodeler INO80 to mediate cocaine craving during prolonged abstinence.

View Article and Find Full Text PDF

Persistent transcriptional and morphological events in the nucleus accumbens (NAc) and other brain reward regions contribute to the long-lasting behavioral adaptations that characterize drug addiction. Opiate exposure reduces the density of dendritic spines on medium spiny neurons of the NAc; however, the underlying transcriptional and cellular events mediating this remain unknown. We show that heroin self-administration negatively regulates the actin-binding protein drebrin in the NAc.

View Article and Find Full Text PDF

Addictive behaviors, including relapse, are thought to depend in part on long-lasting drug-induced adaptations in dendritic spine signaling and morphology in the nucleus accumbens (NAc). While the influence of activity-dependent actin remodeling in these phenomena has been studied extensively, the role of microtubules and associated proteins remains poorly understood. We report that pharmacological inhibition of microtubule polymerization in the NAc inhibited locomotor sensitization to cocaine and contextual reward learning.

View Article and Find Full Text PDF

Background: Substance use disorder is a neurobiological disease characterized by episodes of relapse despite periods of withdrawal. It is thought that neuroadaptations in discrete brain areas of the reward pathway, including the nucleus accumbens, underlie these aberrant behaviors. The ubiquitin-proteasome system degrades proteins and has been shown to be involved in cocaine-induced plasticity, but the role of E3 ubiquitin ligases, which conjugate ubiquitin to substrates, is unknown.

View Article and Find Full Text PDF

Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs).

View Article and Find Full Text PDF

Central administration of melanocortin ligands has been used as a critical technique to study energy homeostasis. While intracerebroventricular (ICV) injection is the most commonly used method during these investigations, intrathecal (IT) injection can be equally efficacious for the central delivery of ligands. Importantly, intrathecal administration can optimize exploration of melanocortin receptors in the spinal cord.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spiny neurons (MSNs). In response to early withdrawal from repeated cocaine administration, de novo dendritic spine formation occurs in NAc MSNs. Much evidence indicates that this new spine formation facilitates the rewarding properties of cocaine.

View Article and Find Full Text PDF

Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm.

View Article and Find Full Text PDF

Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans.

View Article and Find Full Text PDF

Background: Drug addiction is defined as a chronic disease characterized by compulsive drug seeking and episodes of relapse despite prolonged periods of drug abstinence. Neurobiological adaptations, including transcriptional and epigenetic alterations in the nucleus accumbens, are thought to contribute to this life-long disease state. We previously demonstrated that the transcription factor SMAD3 is increased after 7 days of withdrawal from cocaine self-administration.

View Article and Find Full Text PDF

Unlabelled: ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress.

View Article and Find Full Text PDF

Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process.

View Article and Find Full Text PDF

Substance abuse and other psychiatric diseases may share molecular pathology. In order to test this hypothesis, we examined the role of Disrupted In Schizophrenia 1 (DISC1), a psychiatric risk factor, in cocaine self-administration (SA). Cocaine SA significantly increased expression of DISC1 in the nucleus accumbens (NAc); while knockdown of DISC1 in NAc significantly increased cocaine SA and decreased phosphorylation of GSK-3β at Ser9 compared to scrambled shRNA.

View Article and Find Full Text PDF

Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.

View Article and Find Full Text PDF

An imbalance in molecular signaling cascades and transcriptional regulation in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine D1 versus D2 receptors, is implicated in the behavioral responses to psychostimulants. To provide further insight into the molecular mechanisms occurring in MSN subtypes by cocaine, we examined the transcription factor early growth response 3 (Egr3). We evaluated Egr3 because it is a target of critical cocaine-mediated signaling pathways and because Egr3-binding sites are found on promoters of key cocaine-associated molecules.

View Article and Find Full Text PDF

Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins.

View Article and Find Full Text PDF

ΔFosB, a FosB gene product, is induced in the prefrontal cortex (PFC) by repeated exposure to several stimuli including antipsychotic drugs such as haloperidol. However, the functional consequences of increased ΔFosB expression following antipsychotic treatment have not been explored. Here, we assessed whether ΔFosB induction by haloperidol mediates the positive or negative consequences or clinical-related actions of antipsychotic treatment.

View Article and Find Full Text PDF