Publications by authors named "Ganbing Zhang"

Currently, metal-organic frameworks (MOFs) derived materials have been widely concerned for the reduction of 4-nitrophenol (4-NP). However, complex recovery of powder catalysts and low utilization ratio of active sites make their application challenging. Herein, a novel CuO/Cu/PDA/CF catalyst has been developed for the rapid reduction of 4-NP to 4-aminophenol (4-AP).

View Article and Find Full Text PDF

Anion-exchange-membrane (AEM) water electrolysis is a promising technology for hydrogen production from renewable energy sources. However, the bottleneck of its development is the poor comprehensive performance of AEM, especially the stability at highly concentrated alkaline condition and temperature. Herein, a new cationic group N-methylquinuclidinium with enhanced alkaline stability is proposed and hereby a full-carbon chain poly(aryl quinuclidinium) AEM is prepared.

View Article and Find Full Text PDF

Liquid-crystal monomers (LCMs), especially fluorinated biphenyls and analogues (FBAs), are identified to be an emerging generation of persistent organic pollutants. However, there is a dearth of information about their occurrence and distribution in environmental water and lacustrine soil samples. Herein, a series of fluorine-functionalized Scholl-coupled microporous polymers (FSMP-, X = 1-3) were designed and synthesized for the highly efficient and selective enrichment of FABs.

View Article and Find Full Text PDF

Defects on metal oxide have attracted extensive attention in photo-/electrocatalytic CO reduction. Herein, porous MgO nanosheets with abundant oxygen vacancies (V s) and three-coordinated oxygen atoms (O ) at corners are reported, which reconstruct into defective MgCO ·3H O exposing rich surface unsaturated -OH groups and vacancies to initiate photocatalytic CO reduction to CO and CH . In consecutive 7-cycle tests (each run for 6 h) in pure water, CO conversion keeps stable.

View Article and Find Full Text PDF

2D materials have attracted great interest since the report of graphene. However, because of the fragile stability of ultra-thin nanosheets, most studies are restricted to sheets maintained by strong covalent or coordination bonds. The research on which kind of bonds can maintain the free-standing existence of 2D nanosheets is still of great significance.

View Article and Find Full Text PDF

Recently, single-atom catalysts (SACs) have been used to construct biosensors for the determination of organophosphorus pesticides (OPs). However, most nanozymes including SACs are peroxidase-like enzymes and require highly toxic and unstable hydrogen peroxide (HO) as a co-reactant to generate reactive oxygen species. Inspired by the heme site of cytochrome oxidases (Cos), the construction of Fe-N-coordinated SACs by introducing axial N ligands is expected to bind O to generate active metal-oxygen intermediates.

View Article and Find Full Text PDF

Nowadays, environment fate and behavior of pesticides in soil is still not fully understood due to the lack of standardized soil extraction method. In this work, a soil-filled micro-matrix cartridge was online combined with high performance liquid chromatography-mass spectrometry (HPLC-MS) through a six-way valve for the simultaneous extraction and determination of residual fipronil in soil. Compared with conventional extraction methods, such as hydroxypropyl-β-cyclodextrin (HPCD) extraction, shaking extraction, ultrasonic-assisted extraction (UAE), three-step extraction and matrix solid phase dispersion (MSPD), the novel, miniaturized, and integrated online micro-matrix cartridge extraction (online μ-MCE) method exhibited better performance in terms of desorption efficiency (99.

View Article and Find Full Text PDF

In this work, a polypropylene frit with porous network structure (20 μm pole size) was first utilized as the mould of polymer monolithic material, poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-co-EDMA) monolith was synthesized within channels and macropores of the frit. A simple and sensitive solid-phase microextraction method based on polymer monolith frit coupled with high-performance liquid chromatography (HPLC) was established and applied to analysis of hexanal and heptanal in biological samples (human urine and serum). In the method, small molecule metabolites (aldehydes) in biological samples derivatized with 2,4-dinitrophenylhydrazine (DNPH), and the formed hydrazones were extracted simultaneously on the monolithic frit and thereafter ultrasound-assisted desorbed with acetonitrile as elution solvent.

View Article and Find Full Text PDF

A new dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of volatile aldehyde biomarkers (hexanal and heptanal) in human blood samples. In the derivatization and extraction procedure, 2,4-dinitrophenylhydrazine (DNPH) as derivatization reagent and formic acid as catalyzer were injected into the sample solution for derivatization with aldehydes, then the formed hydrazones was rapidly extracted by dispersive liquid-liquid microextraction with 1-dodecanol as extraction solvent. After centrifugation, the floated droplet was solidified in an ice bath and was easily removed for analysis.

View Article and Find Full Text PDF