Deep learning-based marker detection for autonomous drone landing is widely studied, due to its superior detection performance. However, no study was reported to address non-uniform motion-blurred input images, and most of the previous handcrafted and deep learning-based methods failed to operate with these challenging inputs. To solve this problem, we propose a deep learning-based marker detection method for autonomous drone landing, by (1) introducing a two-phase framework of deblurring and object detection, by adopting a slimmed version of deblur generative adversarial network (DeblurGAN) model and a You only look once version 2 (YOLOv2) detector, respectively, and (2) considering the balance between the processing time and accuracy of the system.
View Article and Find Full Text PDFComputer-aided diagnosis systems have been developed to assist doctors in diagnosing thyroid nodules to reduce errors made by traditional diagnosis methods, which are mainly based on the experiences of doctors. Therefore, the performance of such systems plays an important role in enhancing the quality of a diagnosing task. Although there have been the state-of-the art studies regarding this problem, which are based on handcrafted features, deep features, or the combination of the two, their performances are still limited.
View Article and Find Full Text PDFAlthough face-based biometric recognition systems have been widely used in many applications, this type of recognition method is still vulnerable to presentation attacks, which use fake samples to deceive the recognition system. To overcome this problem, presentation attack detection (PAD) methods for face recognition systems (face-PAD), which aim to classify real and presentation attack face images before performing a recognition task, have been developed. However, the performance of PAD systems is limited and biased due to the lack of presentation attack images for training PAD systems.
View Article and Find Full Text PDFImage-based computer-aided diagnosis (CAD) systems have been developed to assist doctors in the diagnosis of thyroid cancer using ultrasound thyroid images. However, the performance of these systems is strongly dependent on the selection of detection and classification methods. Although there are previous researches on this topic, there is still room for enhancement of the classification accuracy of the existing methods.
View Article and Find Full Text PDFA paradigm shift is required to prevent the increasing automobile accident deaths that are mostly due to the inattentive behavior of drivers. Knowledge of gaze region can provide valuable information regarding a driver's point of attention. Accurate and inexpensive gaze classification systems in cars can improve safe driving.
View Article and Find Full Text PDFIntelligent surveillance systems have been studied by many researchers. These systems should be operated in both daytime and nighttime, but objects are invisible in images captured by visible light camera during the night. Therefore, near infrared (NIR) cameras, thermal cameras (based on medium-wavelength infrared (MWIR), and long-wavelength infrared (LWIR) light) have been considered for usage during the nighttime as an alternative.
View Article and Find Full Text PDFRecently, human detection has been used in various applications. Although visible light cameras are usually employed for this purpose, human detection based on visible light cameras has limitations due to darkness, shadows, sunlight, etc. An approach using a thermal (far infrared light) camera has been studied as an alternative for human detection, however, the performance of human detection by thermal cameras is degraded in case of low temperature differences between humans and background.
View Article and Find Full Text PDF